4 research outputs found

    Correction to: "Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocyes during 36 weeks in rabbit model (Cell and Tissue Research, (2016), 364, 3, (559-572), 10.1007/s00441-015-2355-9)

    Get PDF
    In this paper, figure 1 and its associated text were erroneously identical to that of another article from our group (Mobini et al., 2016, Journal of Biomaterial Application, SAGE publications). Unfortunately, copyright permission to re-use figure 1 and its related data were not requested. The authors would like to apologize for any confusion caused in this regard. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature

    The effect of Echinacea purpurea aerial organ dried extract vs. Zinc oxide on skin wound healing in rat: a morphometric & histopathologic study

    No full text
    "nBackground: Because of eventual side effects of chemical drugs, the efficacy of natural wound healing accelerators in long-term diseases and some situations is demanded to practitioners. The initial aim of our study was to assess full thickness excisional skin wound healing and inflammation diminution, Morphometrically and Histopathologically, after topical application of dried extract of Echinacea purpurea aerial part in rats, compared with zinc oxide. "nMethods: Sixty wistar rats received four full thickness excisional wounds with the aim of surgical punch on the back skin under surgical anesthesia. All rats were randomly divided into groups 1, 2 and 3, of Echinacea purpurea, zinc oxide and control, respectively. All of them were treated topically once a day for 21 uninterrupted days. Healing of the wounds was daily measured by taking digital photographs and analysis. Histopathologic assessment was carried out in the 0th, 3rd, 7th, 14th, and 21st days of treatment period as well, and wound healing was assessed using 1 to 6 healing grades. "nResults: According to Morphometric findings, the wound contraction rate in group 1 after 21 days of skin punching, with wound size of 0.18±0.03 mm2 in contrast with group 2, 2.81±0.21mm2, was much higher than that in other groups. Group 1 with wound contraction rate of 2.5 times in the day 7 and 3 times in the day 14 more than group 2, had the best wound contraction (p<0.01). histopathologic assessment revealed that, overall healing rate in the group 1 was highest (p<0.01). "nConclusion: Echinacea purpurea dried herbal extract could be a new capable remedy to accelerate skin wound healing because of its potential anti-phlogosis and wound healing stimulatory properties

    Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model

    No full text
    The reconstruction capability of osteochondral (OCD) defects using silk-based scaffolds has been demonstrated in a few studies. However, improvement in the mechanical properties of natural scaffolds is still challengeable. Here, we investigate the in vivo repair capacity of OCD defects using a novel Bombyx mori silk-based composite scaffold with great mechanical properties and porosity during 36 weeks. After evaluation of the in vivo biocompatibility and degradation rate of these scaffolds, we examined the effectiveness of these fabricated scaffolds accompanied with/without autologous chondrocytes in the repair of OCD lesions of rabbit knees after 12 and 36 weeks. Moreover, the efficiency of these scaffolds was compared with fibrin glue (FG) as a natural carrier of chondrocytes using parallel clinical, histopathological and mechanical examinations. The data on subcutaneous implantation in mice showed that the designed scaffolds have a suitable in vivo degradation rate and regenerative capacity. The repair ability of chondrocyte-seeded scaffolds was typically higher than the scaffolds alone. After 36 weeks of implantation, most parts of the defects reconstructed by chondrocytes-seeded silk scaffolds (SFC) were hyaline-like cartilage. However, spontaneous healing and filling with a scaffold alone did not eventuate in typical repair. We could not find significant differences between quantitative histopathological and mechanical data of SFC and FGC. The fabricated constructs consisting of regenerated silk fiber scaffolds and chondrocytes are safe and suitable for in vivo repair of OCD defects and promising for future clinical trial studies. © 2016, Springer-Verlag Berlin Heidelberg
    corecore