15 research outputs found

    Numerical Investigation of Airborne Infection Risk in an Elevator Cabin under Different Ventilation Designs

    Full text link
    Airborne transmission of SARS-CoV-2 via virus-laden aerosols in enclosed spaces poses a significant concern. Elevators, commonly utilized enclosed spaces in modern tall buildings, present a challenge as the impact of varying heating, ventilation, and air conditioning (HVAC) systems on virus transmission within these cabins remains unclear. In this study, we employ computational modeling to examine aerosol transmission within an elevator cabin outfitted with diverse HVAC systems. Using a transport equation, we model aerosol concentration and assess infection risk distribution across passengers' breathing zones. We calculate particle removal efficiency for each HVAC design and introduce a suppression effect criterion to evaluate the effectiveness of the HVAC systems. Our findings reveal that mixing ventilation, featuring both inlet and outlet at the ceiling, proves most efficient in reducing particle spread, achieving a maximum removal efficiency of 79.40% during the exposure time. Conversely, the stratum ventilation model attains a mere removal efficiency of 3.97%. These results underscore the importance of careful HVAC system selection in mitigating the risk of SARS-CoV-2 transmission within elevator cabins.Comment: 38 pages, 14 figure

    Reducing Virus Transmission from Heating, Ventilation, and Air Conditioning Systems of Urban Subways

    No full text
    Aerosols carrying the virus inside enclosed spaces is an important mode of transmission for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as supported by growing evidence. Urban subways are one of the most frequented enclosed spaces. The subway is a utilitarian and low-cost transit system in modern society. However, studies are yet to demonstrate patterns of viral transmission in subway heating, ventilation, and air conditioning (HVAC) systems. To fill this gap, we performed a computational investigation of the airflow (and associated aerosol transmission) in an urban subway cabin equipped with an HVAC system. We employed a transport equation for aerosol concentration, which was added to the basic buoyant solver to resolve the aerosol transmission inside the subway cabin. This was achieved by considering the thermal, turbulent, and induced ventilation flow effects. Using the probability of encountering aerosols on sampling surfaces crossing the passenger breathing zones, we detected the highest infection risk zones inside the urban subway under different settings. We proposed a novel HVAC system that can impede aerosol spread, both vertically and horizontally, inside the cabin. In the conventional model, the maximum probability of encountering aerosols from the breathing of infected individuals near the fresh-air ducts was equal to 51.2%. This decreased to 3.5% in the proposed HVAC model. Overall, using the proposed HVAC system for urban subways led to a decrease in the mean value of the probability of encountering the aerosol by approximately 84% compared with that of the conventional system

    COVID-19 pandemic and patients with cancer: The protocol of a Clinical Oncology center in Tehran, Iran

    No full text
    AimTo provide recommendations for the management of patients with cancer in the COVID-19 era.BackgroundThe current global pandemic of COVID-19 has severely impacted global healthcare systems. Several groups of people are considered high-risk for SARS-CoV-2 infection, including patients with cancer. Therefore, protocols for the better management of these patients during this viral pandemic are necessary. So far, several protocols have been presented regarding the management of patients with cancer during the COVID-19 pandemic. However, none of them points to a developing country with limited logistics and facilities.MethodsIn this review, we have provided a summary of recommendations on the management of patients with cancer during the COVID-19 pandemic based on our experience in Shohada-e Tajrish Hospital, Iran.ResultsWe recommend that patients with cancer should be managed in an individualized manner during the COVID-19 pandemic.ConclusionsOur recommendation provides a guide for oncology centers of developing countries for better management of cancer

    Targeted Anti-Mitochondrial Therapy: The Future of Oncology

    No full text
    Like living organisms, cancer cells require energy to survive and interact with their environment. Mitochondria are the main organelles for energy production and cellular metabolism. Recently, investigators demonstrated that cancer cells can hijack mitochondria from immune cells. This behavior sheds light on a pivotal piece in the cancer puzzle, the dependence on the normal cells. This article illustrates the benefits of new functional mitochondria for cancer cells that urge them to hijack mitochondria. It describes how functional mitochondria help cancer cells’ survival in the harsh tumor microenvironment, immune evasion, progression, and treatment resistance. Recent evidence has put forward the pivotal role of mitochondria in the metabolism of cancer stem cells (CSCs), the tumor components responsible for cancer recurrence and metastasis. This theory highlights the mitochondria in cancer biology and explains how targeting mitochondria may improve oncological outcomes

    Ciliated, Mitochondria-Rich Postmitotic Cells are Immune-privileged, and Mimic Immunosuppressive Microenvironment of Tumor-Initiating Stem Cells: From Molecular Anatomy to Molecular Pathway

    No full text
    Cancer whose major problems are metastasis, treatment resistance, and recurrence is the leading cause of death worldwide. Tumor-initiating stem cells (TiSCs) are a subset of the tumor population responsible for tumor resistance and relapse. Understanding the characteristics and shared features between tumor-initiating stem cells (TiSCs) and long-lived postmitotic cells may hold a key to better understanding the biology of cancer. Postmitotic cells have exited the cell cycle and are transitioned into a non-dividing and terminally differentiated state with a specialized function within a tissue. Conversely, a cancer cell with TiSC feature can divide and produce a variety of progenies, and is responsible for disease progression, tumor resistance to therapy and immune system and disease relapse. Surprisingly, our comprehensive evaluation of TiSCs suggests common features with long-lived post-mitotic cells. They are similar in structure (primary cilia, high mitochondrial content, and being protected by a barrier), metabolism (autophagy and senescence), and function (immunoescape and/or immune-privileged by a blood barrier). In-depth exploration showed how mitochondrial metabolism contributes to these shared features, including high energy demands arising from ciliary and microtubular functionality, increased metabolic activity, and movement. These findings can assist in decoding the remaining properties which offer insights into the biology of TiSCs, with potential implications for enhancing cancer treatment strategies and patient prognosis

    Nanodelivery systems: An efficient and target‐specific approach for drug‐resistant cancers

    No full text
    Abstract Background Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. Methods With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. Results This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting‐edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. Conclusions Studies have shown that nanoparticle‐mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities

    Radiopharmaceuticals: navigating the frontier of precision medicine and therapeutic innovation

    No full text
    Abstract This review article explores the dynamic field of radiopharmaceuticals, where innovative developments arise from combining radioisotopes and pharmaceuticals, opening up exciting therapeutic possibilities. The in-depth exploration covers targeted drug delivery, delving into passive targeting through enhanced permeability and retention, as well as active targeting using ligand-receptor strategies. The article also discusses stimulus-responsive release systems, which orchestrate controlled release, enhancing precision and therapeutic effectiveness. A significant focus is placed on the crucial role of radiopharmaceuticals in medical imaging and theranostics, highlighting their contribution to diagnostic accuracy and image-guided curative interventions. The review emphasizes safety considerations and strategies for mitigating side effects, providing valuable insights into addressing challenges and achieving precise drug delivery. Looking ahead, the article discusses nanoparticle formulations as cutting-edge innovations in next-generation radiopharmaceuticals, showcasing their potential applications. Real-world examples are presented through case studies, including the use of radiolabelled antibodies for solid tumors, peptide receptor radionuclide therapy for neuroendocrine tumors, and the intricate management of bone metastases. The concluding perspective envisions the future trajectory of radiopharmaceuticals, anticipating a harmonious integration of precision medicine and artificial intelligence. This vision foresees an era where therapeutic precision aligns seamlessly with scientific advancements, ushering in a new epoch marked by the fusion of therapeutic resonance and visionary progress. Graphical Abstrac

    A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer

    No full text
    Abstract Background Magnesium (Mg) has gained much importance recently because of its unique range of biological functions. It is one of the most significant micronutrients in biological systems. This review aims to outline the immune-regulating actions of Mg and its crucial role in regulating inflammation and immune response to infectious agents and malignancies. Methods We conducted a literature review on MEDLINE, PubMed, EMBASE, Web of Science to determine the impact of Mg on immune regulation in three settings of inflammation, infection, and cancer. We thoroughly examined all abstracts and full-text articles and selected the most relevant ones for inclusion in this review. Results Mg has long been associated with immunological responses, both nonspecific and specific. It plays a pivotal role in diverse immune responses by participating in multiple mechanisms. It facilitates substance P binding to lymphoblasts, promotes T helper, B cell, and macrophage responses to lymphokines, and facilitates antibody-dependent cytolysis and immune cell adherence. Besides, Mg serves as a cofactor for C'3 convertase and immunoglobulin synthesis. It additionally boasts a significant anti-cancer effect. Chronic Mg deficiency leads to enhanced baseline inflammation associated with oxidative stress, related to various age-associated morbidities. A deficiency of Mg in rodents has been observed to impact the cell-mediated immunity and synthesis of IgG adversely. This deficiency can lead to various complications, such as lymphoma, histaminosis, hypereosinophilia, increased levels of IgE, and atrophy of the thymus. The immunological consequences of Mg deficiency in humans can be influenced by the genetic regulation of Mg levels in blood cells. Mg can also mediate cell cycle progression. There has been a renewed interest in the physiology and therapeutic efficacy of Mg. However, the in-depth mechanisms, their clinical significance, and their importance in malignancies and inflammatory disorders still need to be clarified. Conclusions Mg is essential for optimal immune function and regulating inflammation. Deficiency in Mg can lead to temporary or long-term immune dysfunction. A balanced diet usually provides sufficient Mg, but supplementation may be necessary in some cases. Excessive supplementation can have negative impacts on immune function and should be avoided. This review provides an update on the importance of Mg in an immune response against cancer cells and infectious agents and how it regulates inflammation, oxidative stress, cell progression, differentiation, and apoptosis
    corecore