13 research outputs found

    A Knowledge Graph to Represent Software Vulnerabilities

    Get PDF
    Over the past decade, there has been a major shift towards the globalization of the software industry, by allowing code to be shared and reused across project boundaries. This global code reuse can take on various forms, include components or libraries which are publicly available on the Internet. However, this code reuse also comes with new challenges, since not only code but also vulnerabilities these components might be exposed to are shared. The software engineering community has attempted to address this challenge by introducing bug bounty platforms and software vulnerability repositories, to help organizations manage known vulnerabilities in their systems. However, with the ever-increasing number of vulnerabilities and information related to these vulnerabilities, it has become inherently more difficult to synthesize this knowledge. Knowledge Graphs and their supporting technology stack have been promoted as one possible solution to model, integrate, and support interoperability among heterogeneous data sources. In this thesis, we introduce a methodology that takes advantage of knowledge graphs to integrate resources related to known software vulnerabilities. More specifically, this thesis takes advantage of knowledge graphs to introduce a unified representation that transforms traditional information silos (e.g., VDBs, bug bounty programs) and transforms them in information hubs. Several use cases are presented to illustrate the applicability and flexibility of our modeling approach, demonstrating that the presented knowledge modeling approach can indeed unify heterogeneous vulnerability data sources and enable new types of vulnerability analysis

    Co-determination of capital structure and stock returns in banking industry using structural equation modeling

    No full text
    Capital structure plays essential role on financial strength of business units and there are literally many studies to confirm the relationship between capital structure and return growth. In this paper, we re-examine this relationship by investigating on 12 Iranian private banks using structural equation modelling over the period 2005-2011. The proposed study of this paper designs a questionnaire and distributes it among experts and analyse it use LISREL software package. The result indicates that there is a positive and meaningful relationship, when the level of significance is five percent between capital structure and stock return in private banking industry in Iran. The implementation of Pearson and Spearman correlation tests also validate the findings

    Identifying Unused RF Channels Using Least Matching Pursuit

    No full text
    Cognitive radio aims at identifying unused radio-frequency (RF) bands with the goal of re-using them opportunistically for other services. While compressive sensing (CS) has been used to identify strong signals (or interferers) in the RF spectrum from sub-Nyquist measurements, identifying unused frequencies from CS measurements appears to be uncharted territory. In this paper, we propose a novel method for identifying unused RF bands using an algorithm we call least matching pursuit (LMP). We present a sufficient condition for which LMP is guaranteed to identify unused frequency bands and develop an improved algorithm that is inspired by our theoretical result. We perform simulations for a CS-based RF whitespace detection task in order to demonstrate that LMP is able to outperform black-box approaches that build on deep neural networks

    Energy-Efficient Classification for Resource-Constrained Biomedical Applications

    No full text
    Biomedical applications often require classifiers that are both accurate and cheap to implement. Today, deep neural networks achieve the state-of-the-art accuracy in most learning tasks that involve large data sets of unstructured data. However, the application of deep learning techniques may not be beneficial in problems with limited training sets and computational resources, or under domain-specific test time constraints. Among other algorithms, ensembles of decision trees, particularly the gradient boosted models have recently been very successful in machine learning competitions. Here, we propose an efficient hardware architecture to implement gradient boosted trees in applications under stringent power, area, and delay constraints, such as medical devices. Specifically, we introduce the concepts of asynchronous tree operation and sequential feature extraction to achieve an unprecedented energy and area efficiency. The proposed architecture is evaluated in automated seizure detection for epilepsy, using 3074 h of intracranial EEG data from 26 patients with 393 seizures. Average F1 scores of 99.23% and 87.86% are achieved for random and block-wise splitting of data into train/test sets, respectively, with an average detection latency of 1.1 s. The proposed classifier is fabricated in a 65-nm TSMC process, consuming 41.2 nJ/class in a total area of 540×1850 μm^2 . This design improves the state-of-the-art by 27× reduction in energy-area-latency product. Moreover, the proposed gradient-boosting architecture offers the flexibility to accommodate variable tree counts specific to each patient, to trade the predictive accuracy with energy. This patient-specific and energy-quality scalable classifier holds great promise for low-power sensor data classification in biomedical applications

    Energy-Efficient Classification for Resource-Constrained Biomedical Applications

    No full text
    Biomedical applications often require classifiers that are both accurate and cheap to implement. Today, deep neural networks achieve the state-of-the-art accuracy in most learning tasks that involve large data sets of unstructured data. However, the application of deep learning techniques may not be beneficial in problems with limited training sets and computational resources, or under domain-specific test time constraints. Among other algorithms, ensembles of decision trees, particularly the gradient boosted models have recently been very successful in machine learning competitions. Here, we propose an efficient hardware architecture to implement gradient boosted trees in applications under stringent power, area, and delay constraints, such as medical devices. Specifically, we introduce the concepts of asynchronous tree operation and sequential feature extraction to achieve an unprecedented energy and area efficiency. The proposed architecture is evaluated in automated seizure detection for epilepsy, using 3074 h of intracranial EEG data from 26 patients with 393 seizures. Average F1 scores of 99.23% and 87.86% are achieved for random and block-wise splitting of data into train/test sets, respectively, with an average detection latency of 1.1 s. The proposed classifier is fabricated in a 65-nm TSMC process, consuming 41.2 nJ/class in a total area of 540×1850 μm^2 . This design improves the state-of-the-art by 27× reduction in energy-area-latency product. Moreover, the proposed gradient-boosting architecture offers the flexibility to accommodate variable tree counts specific to each patient, to trade the predictive accuracy with energy. This patient-specific and energy-quality scalable classifier holds great promise for low-power sensor data classification in biomedical applications

    A 41.2 nJ/class, 32-Channel On-Chip Classifier for Epileptic Seizure Detection

    No full text
    A 41.2 nJ/class, 32-channel, patient-specific onchip classification architecture for epileptic seizure detection is presented. The proposed system-on-chip (SoC) breaks the strict energy-area-delay trade-off by employing area and memoryefficient techniques. An ensemble of eight gradient-boosted decision trees, each with a fully programmable Feature Extraction Engine (FEE) and FIR filters are continuously processing the input channels. In a closed-loop architecture, the FEE reuses a single filter structure to execute the top-down flow of the decision tree. FIR filter coefficients are multiplexed from a shared memory. The 540 × 1850 μm 2 prototype with a 1kB register-type memory is fabricated in a TSMC 65nm CMOS process. The proposed on-chip classifier is verified on 2253 hours of intracranial EEG (iEEG) data from 20 patients including 361 seizures, and achieves specificity of 88.1% and sensitivity of 83.7%. Compared to the state-of-the-art, the proposed classifier achieves 27 × improvement in Energy-AreaLatency product

    A 41.2 nJ/class, 32-Channel On-Chip Classifier for Epileptic Seizure Detection

    No full text
    A 41.2 nJ/class, 32-channel, patient-specific onchip classification architecture for epileptic seizure detection is presented. The proposed system-on-chip (SoC) breaks the strict energy-area-delay trade-off by employing area and memoryefficient techniques. An ensemble of eight gradient-boosted decision trees, each with a fully programmable Feature Extraction Engine (FEE) and FIR filters are continuously processing the input channels. In a closed-loop architecture, the FEE reuses a single filter structure to execute the top-down flow of the decision tree. FIR filter coefficients are multiplexed from a shared memory. The 540 × 1850 μm 2 prototype with a 1kB register-type memory is fabricated in a TSMC 65nm CMOS process. The proposed on-chip classifier is verified on 2253 hours of intracranial EEG (iEEG) data from 20 patients including 361 seizures, and achieves specificity of 88.1% and sensitivity of 83.7%. Compared to the state-of-the-art, the proposed classifier achieves 27 × improvement in Energy-AreaLatency product
    corecore