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Abstract 

 

A Knowledge Graph to Represent Software Vulnerabilities 

Milad Taghavi 

 

Over the past decade, there has been a major shift towards the globalization of the software 

industry, by allowing code to be shared and reused across project boundaries. This global code 

reuse can take on various forms, include components or libraries which are publicly available on 

the Internet. However, this code reuse also comes with new challenges, since not only code but 

also vulnerabilities these components might be exposed to are shared. The software engineering 

community has attempted to address this challenge by introducing bug bounty platforms and 

software vulnerability repositories, to help organizations manage known vulnerabilities in their 

systems. However, with the ever-increasing number of vulnerabilities and information related to 

these vulnerabilities, it has become inherently more difficult to synthesize this knowledge. 

Knowledge Graphs and their supporting technology stack have been promoted as one possible 

solution to model, integrate, and support interoperability among heterogeneous data sources.  

In this thesis, we introduce a methodology that takes advantage of knowledge graphs to 

integrate resources related to known software vulnerabilities. More specifically, this thesis takes 

advantage of knowledge graphs to introduce a unified representation that transforms traditional 

information silos (e.g., VDBs, bug bounty programs) and transforms them in information hubs. 

Several use cases are presented to illustrate the applicability and flexibility of our modeling 

approach, demonstrating that the presented knowledge modeling approach can indeed unify 

heterogeneous vulnerability data sources and enable new types of vulnerability analysis. 
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1Introduction 
Traditional software development processes focused on closed architectures and platform-

dependent software that only support limited code reusability across project and organizational 

boundaries. With introduction of the Internet, these boundaries have been removed allowing global 

access, online collaboration, information sharing, and internationalization of the software industry. 

Software development and maintenance tasks can now be shared amongst team members working 

inside and outside organizations. Code reuse throughout the different resources such as software 

libraries, components, services, design patterns, and frameworks published on the Internet has 

become an essential part of today’s software development practice. 

Open-Source Software (OSS) publishes source code and other related artifacts using 

portals such as GitHub1, or Maven2. Such portals allow software artifacts to be shared and reused 

globally. This reusability can take on different forms, such as integrating open-source projects into 

existing software ecosystems (e.g., reuse of code libraries) or extending and customizing available 

projects to meet specific stakeholders needs (e.g., creating specialized Linux distributions). Even 

though globally shared knowledge resources facilitate and benefit from reuse and collaboration, 

they also introduce new challenges to the Software Engineering (SE) community. Knowledge 

 

1 https://github.com/ 
2 https://maven.apache.org/ 
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resources are no longer controlled by a single project or organization, instead they are 

collaboratively managed across projects, organizations, or even global software ecosystems 

boundaries. Among these challenges, Information Security (IS) has emerged as a major threat to 

the software development community [1]. The importance of IS for the software community is 

reflected by the fact that it has become an integrated part of the current SE best practices [2]. At 

its core, IS promotes the access and use of different security resources during the development 

process, such as secure coding practices and information about known software vulnerabilities. 

In this thesis, we are particularly interested in the integration of information about known 

software vulnerabilities into the software development process and how they can benefit 

developers, maintainers, and security experts. Bug bounty platforms [3] along with security 

vulnerabilities databases (VDBs) [4, 5] are two of the more well-known examples of such 

knowledge resources, which can provide software professionals with access to existing security 

issues affecting different software products. Public VDBs (e.g., National Vulnerability Database 

(NVD3) have been introduced to track and publish known software vulnerabilities and solutions to 

resolve them. These VDBs can be seen as a direct response by the software industry to the ever-

increasing number of software attacks, which are no longer limited to a particular project or 

computer but now often affect hundreds of different systems and millions of computers.  

1.1 Motivation 
1.1.1 Research Objectives 

Weaknesses in software systems are flaws, faults, bugs, vulnerabilities, and other errors 

that left unaddressed and can make a system vulnerable to attacks. Examples of such flaws include 

buffer overflows, improper certificate validation, or using components with known vulnerabilities. 

These software vulnerabilities provide an entry point for attackers, giving affected systems a 

 

3 https://nvd.nist.gov 
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greater attack surface [6]. Hackers can leverage this additional attack surface to gain direct access 

to a system or network. From the moment a vulnerability is discovered until it is patched, a system 

is potentially exposed to attacks. Since this exposure window leaves systems without protection, 

it must be as short as possible. This identification, tracking, and reporting of vulnerabilities 

becomes even more critical in today’s software ecosystems, where (vulnerable) components are 

often shared across projects, organizations, and even software ecosystem boundaries. 

To address the removal and management of known security threats, the security community 

has introduced several knowledge sources that collect information about known software 

vulnerabilities. For example, VDBs capture information about known software vulnerabilities, 

their patches, and report on systems affected by these vulnerabilities. However, with this large 

amount of security vulnerability data being spread across many VDBs, software developers are 

struggling to identify and locate relevant resources. The situation is further complicated by the fact 

that individual VDBs are based on different data models. Such heterogeneity in the data 

representation is often the source of data ambiguity and inconsistency in VDBs and has become 

another major challenge for organizations managing both disclosure and access to these 

information resources. In addition, individual VDBs provide access to their information through 

APIs, RSS feeds, or notification services, while sharing and integration of these resources have 

remained an open question [7]. 

There have been many efforts on creating software analytics tools or services to support 

programmers in managing known vulnerabilities (e.g., [8], [9]). However, the applicability of these 

approaches is often limited due to several reasons:  

1) The proposed tools have remained in information silos by relying on their own 

proprietary data collection and models. While these models work well for supporting tool-specific 

analytics services, they limit their ability to share, reuse and integrate data and analysis results with 

other software analytics tools and knowledge resources.  
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2) The underlying knowledge models used by current analysis approaches neglect 

supporting the seamless integration of new knowledge resources or the ability to deal with 

incomplete data.  

3) Their analysis support is often limited by their underlying knowledge models and 

provides limited flexibility in terms of supporting user-specific analysis needs. 

In this thesis, we take the advantage of the Semantic Web (SW) and its technology stack 

(e.g., ontologies, Linked Data, SW reasoning services) to establish a unified knowledge graph 

representation of vulnerability-relevant resources. Based on this knowledge graph, we can 

extend and integrate the obtained knowledge with other resources. This enables having a more 

flexible and comprehensive global vulnerability analysis approach that can provide system 

developers and maintainers with guidance during the management of known vulnerabilities. 

The research presented in this thesis is a continuation of work done by Sultan [10] and 

Eghan [11] on semantic modeling in which they introduced a Security Vulnerability Analysis 

Framework (SV-AF) that establishes traceability links between NVD, Maven, and the source code 

of projects. In our research, we extended this work to include additional knowledge resources (e.g., 

bug bounty programs and additional vulnerability databases) to further enrich the knowledge base 

that can form the basis for novel vulnerability analysis services.  

1.2 Motivating Example 

Nowadays many software companies offer solutions that integrate services, components, 

and code from external resources. Such integrations, provide organizations with added value rather 

than having to recreate those services or functionalities from scratch. Different techniques (e.g., 
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APIs4, libraries, RESTful5 interfaces, RPC6) are used to build a trustworthy relationship between 

separate working software applications. While many measures have been taken to maintain 

software security, applications are still getting penetrated through a trusted third-party system that 

is vulnerable to some recently exploited weaknesses. Apart from API connections, developers also 

heavily rely on published libraries by the software community. These external components 

introduce another penetration port for creating a vulnerable system. While developers can attempt 

to manually monitor vulnerability databases for known vulnerabilities that might affect their 

product, this type of monitoring has serval shortcomings.  

1.) There are many VDBs and bounty platforms, as well as other resources that may contain 

information about known vulnerabilities and would require to be monitored to stay ahead 

of possible weaknesses that might affect their systems. 

2.) API dependencies – while a developer might be aware of which APIs or libraries are used 

in their system, these components might not be directly exposed to vulnerabilities but only 

indirectly, through the reuse of other external vulnerable libraries. Identifying such 

transitive dependencies manually is not only difficult but also error-prone since one must 

consider several factors during this type of analysis, such as library versions and whether 

(and how) a vulnerable code fragment in these libraries is used. 

 

For example, Log4j7 is one of the most used logging Frameworks in Java that allows 

developers to keep track of what happens in their software applications or online services. On 

December 9, 2021, a Chinese security researcher sounded the alarm about a vulnerability in Log4j8 

and was immediately exploited by hackers. The United States alone was hit with 10 million 

 

4 https://en.wikipedia.org/wiki/API 
5 https://en.wikipedia.org/wiki/Representational_state_transfer 
6 https://en.wikipedia.org/wiki/Remote_procedure_call 
7 https://logging.apache.org/log4j/2.x/ 
8 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228 
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attempted exploits per hour, with attacks specifically targeting certain critical infrastructure sectors 

[12]. Companies like Apple, Amazon, Cloudflare, IBM, Microsoft, and Twitter began 

experiencing a barrage of attacks and many had no choice but to shut down systems until the 

vulnerability could be resolved [12]. Even the Quebec government shut down nearly 4000 of its 

sites as a preventive measure [13]. This example illustrates, how a widely used vulnerable source 

code can impact not only individual applications but also the complete software ecosystem and 

even commercial systems and organizations are not immune to such vulnerabilities. 

Internationally, estimates suggest nearly one-half of global corporate networks experienced 

a successful exploit in the first five days following the vulnerability’s discovery [14]. According 

to [15], 60% of the Java projects monitored by Snyk that are using the Log4j library are using it 

as an indirect dependency. Figure 1-1 shows the results of a study conducted in 2020, comparing 

the direct and indirect vulnerabilities found in 5 popular package manager repositories. 

 

Figure 1-1: Vulnerabilities from direct vs indirect dependencies [15] 

The goal of this thesis is therefore to address some of these challenges, by providing a 

unified knowledge representation of resources and artifacts related to known software 

vulnerabilities. This unified representation not only allows us to eliminate some of these traditional 

information silos these resources have remained in but also provides the foundation for novel 
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software analytics services that can support impact and ripple effect analysis of vulnerabilities on 

software products and even complete software ecosystems. 

 

1.3 Contributions 

The main contributions of our work are as follows: 

• A review of known software vulnerability resources (Chapter 2) 

• Proposing a methodology that establishes a knowledge graph for software artifacts. 

(Chapter 3) 

• Introduce a knowledge graph for software vulnerability related resources based on our 

knowledge modeling methodology. (Chapter 4) 

• Discuss major design decisions we applied to enhance the ontology design and illustrate 

how our approach takes advantage of reasoning services. (Chapter 4) 

• Illustrate how our integrated knowledge modeling approach can support novel types of 

knowledge-driven software analytics services. More specifically, we show examples of 

vulnerability analysis across VDBs and Bug Bounty Platforms. (Chapter 5) 

The remainder of the thesis is organized as follows: Chapter 2 provides background related 

to bug bounty programs and semantic web technologies. Chapter 3 presents a methodology to 

create a knowledge graph for software artifacts. Chapter 4 applies our methodology to create a 

knowledge graph for known software vulnerabilities. Chapter 5 demonstrates some use cases using 

developed ontology and acquired data. Related work and discussions are discussed in Chapter 6. 

Finally, Chapter 7 offers concluding remarks and outlines future research directions you may find 

Appendices in Section 8 for more information 
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2Background 
In this chapter, we provide a brief overview of the core techniques and terminologies used 

in our research. If you are already familiar with these concepts, you can safely move on to the next 

chapter as cross-references are provided wherever specific background information is required. 

2.1 The Semantic Web 

The Semantic Web has been defined by Berners-Lee et al. as “an extension of the Web, in 

which information is given well-defined meaning, better-enabling computers and people to work 

in cooperation” [16]. It forms a Web from documents to data, where data should be accessed using 

the general Web architecture (e.g., URIs). Using this Semantic Web infrastructure allows data to 

be linked, just as documents (or portions of documents) are already, allowing data to be shared 

and reused across application, enterprise, and community boundaries. Some of the knowledge 

modeling challenges which are addressed by the Semantic Web include vastness, vagueness, 

uncertainty, inconsistency, and deceit of information. Ontologies are an important foundation of 

the SW as they allow knowledge to be shared between different agents and the creation of common 

terminologies for understanding [17]. In computer science, a widely accepted definition has been 

introduced by Studer [18]: “an ontology is a formal, explicit specification of a shared 

conceptualization.” Ontologies allow the specification of concepts and relationships in a domain 

of discourse. Having such a formal representation improves portability, flexibility, and 

information-sharing problems associated with traditional databases [19]. In addition, while 

Chapter 2 
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traditional database systems assume complete knowledge (closed world assumption), ontologies 

support the modeling of incomplete knowledge (open world assumption), as well as the 

extensibility of the knowledge model (ontologies).  

In a Semantic Web, data can be processed by computers as well as by humans, including 

inferring new relationships among pieces of data. For machines to understand and reason about 

knowledge, this knowledge needs to be represented in a well-defined, machine-readable language. 

The Semantic Web can be considered a collaborative project that is planned and designed to 

achieve a universal medium for exchanging information on the World Wide Web in a way that 

machines can understand and process this information. To provide this meaningful information for 

machines, there is a need in creating data that describes data on the web which is called Metadata. 

Consequently, Metadata gives machines a method to process the meaning of things which is called 

semantics. Hence, when computers have semantics, they are qualified for solving complex 

semantical optimization problems such as returning relevant search results. 

2.2 The Semantic Web and its Technology Stack 

Ontologies are an important foundation of the SW, as they allow knowledge to be shared 

between different agents and the creation of common terminologies for understanding [17]. The 

current data model used to represent this meta-data in SW is the Resource Description Format 

(RDF). RDF is used to formalize meta-models in the form of <subject, predicate, object>, which 

are called triples. RDF triples make statements about resources, with a resource in the SW being 

anything—a person, project, software, a security bug, etc. To make triples persistent, RDF triples 

stores are used, with each triple being identified by a Uniform Resource Identifier (URI). The Web 

Ontology Language (OWL) [20] is used on top of the RDF layer (see Figure 2-1). It is a standard 

modeling language put forward by the W3C to pursue the vision of the SW. OWL provides for 

machine understandable (i.e., capturing semantics) information, allowing Web resources to be 

automatically processed and integrated. The widely used OWL sub-language OWL-DL is based 

on the Description Logics (DLs) [21]. 
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Figure 2-1: Semantic Web technology stack. [22] 

 

2.2.1 Description Logic 

A DL-based knowledge representation system provides typical facilities to set up 

knowledge bases and to reason about their content [21]. Figure 2-2 illustrates a typical DL-based 

knowledge system. Such a knowledge base (KB) consists of two components—the TBox contains 

the terminology (i.e., the vocabulary of an application domain), and the ABox contains assertions 

about named individuals in terms of this vocabulary. The terminology is specified using 

description languages introduced previously in this section, as well as terminological axioms, 

which make statements about how concepts or roles are related to each other.  
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Figure 2-2: Description Logic System 

 

In the most general case, terminological axioms have the form: 

𝐶 ⊑ 𝐷 (𝑅 ⊑ 𝑆) 𝑜𝑟 𝐶 ≡ 𝐷 (𝑅 ≡ 𝑆),  

where 𝐶 and 𝐷 are concepts (𝑅 and 𝑆 are roles). The semantics of axioms are defined as: an 

interpretation 𝑰 satisfies 𝐶 ⊑ 𝐷 (𝑅 ⊑ 𝑆) if 𝐶𝑰 ⊑ 𝐷𝑰 (𝑅𝑰 ⊑ 𝑆𝑰).  

A TBox, denoted as 𝑻, is a finite set of such axioms. The assertions in an ABox are 

specified using concept assertions and role assertions, which have the form 𝐶(𝑎), 𝑅(𝑎, 𝑏), where 𝐶 

is a concept, 𝑅 is a role, and 𝑎, 𝑏 are names of individuals. A DL system not only stores 

terminologies and assertions but also offers services that allow reasoning about them. Typical 

reasoning services for a TBox are to determine if a concept is more general than another (i.e., 

subsumption) or if a concept is satisfiable (i.e., non‐contradictory). Reasoning services for an 

ABox are to find out whether its set of assertions is consistent, and whether the assertions in an 

ABox entail that a particular individual is an instance of a given concept description. 

A DL knowledge base might be embedded into an application in which some components 

interact with the KB by querying and modifying the knowledge, i.e., by adding and retracting 

concepts, roles, and assertions. However, many DL systems also provide an application 
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programming interface that consists of functions with well‐defined logical semantics, which 

application programs can use to operate on the KB [21]. 

2.2.2 The Resource Description Framework (RDF) 

RDF was developed by the World Wide Web Consortium (W3C) to allow for the 

automated semantic processing of information, by structuring information using individual 

statements that consist of (Subject, Predicate, Object). RDF is the foundation of the Semantic Web 

and what provides its innate flexibility. All data in the Semantic Web is represented in RDF, 

including schema describing RDF data. Although frequently referred to as a ‘language’, RDF is 

mainly a data model. It is based on the idea that the things being described have properties, which 

have values, and that resources can be described by making statements. RDF prescribes how to 

make statements about resources, in particular, Web resources, in the form of subject-predicate-

object expressions. RDF is not like the tabular data model of relational databases. Nor is it like the 

trees of the XML world. Instead, RDF is a graph and is classified as a No-SQL database type. 

The basic RDF components include statements, Uniform Resource Identifiers, properties, 

blank nodes, and literals. RDF-star (formerly RDF*) extends RDF with support for embedded 

triples. RDF is a bunch of nodes connected by edges where both the nodes and edges have labels. 

Web Ontology Language (OWL) 

OWL is an ontology language for the Web. OWL is a Semantic Web language designed to 

represent rich and complex knowledge about things, groups of things, and relations between 

things. OWL is a computational logic-based language such that knowledge expressed in OWL can 

be exploited by computer programs, e.g., to verify the consistency of that knowledge or to make 

implicit knowledge explicit. OWL documents, known as ontologies, can be published on the 

World Wide Web and may refer to or be referred to from other OWL ontologies. OWL is part of 

the W3C’s Semantic Web technology stack, which includes RDF, RDFS, SPARQL, etc. The 

current version of OWL, also referred to as “OWL 2”, was developed by the W3C OWL Working 

Group and published in 2009, with a Second Edition published in 2012. Syntactically, an OWL 
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ontology is a valid RDF document and as such also a well-formed XML document. This allows 

OWL to be processed by the wide range of XML and RDF tools already available. 

Its primary uses are fast and flexible data modeling and efficient automated reasoning. 

Semantically, OWL is based on the description logics [21]. Generally, description logics are a 

family of logics that are decidable fragments of first-order predicate logic. These logics focus on 

describing classes and roles and have set-theoretic semantics. 

2.2.3 SPARQL 

SPARQL is a query language for dealing with information from RDF graphs. As a data 

access language, it is suitable for both local and remote use. It provides facilities to: 

• extract information in the form of URIs, blank nodes, and literals. 

• extract RDF subgraphs. 

• construct new RDF graphs based on information in the queried graphs. 

The RDF data model expresses information as graphs, consisting of triples with subject, 

predicate, and object. Many RDF data stores hold multiple RDF graphs, and record information 

about each graph, allowing an application to make queries that involve information from more 

than one graph. The SPARQL query language is based on matching graph patterns. A SPARQL 

query is executed against an RDF Dataset which represents such a collection of graphs. Different 

parts of the query may be matched against different graphs. There is one graph, the default graph, 

which does not have a name, and zero or more named graphs, each identified by IRI [23]. 

There are three types of data sources that can be queried: RDF files, Triple Stores, and 

SPARQL endpoints.  

• RDF file – A file containing RDF can be loaded by an application into its corresponding 

graph and be queried against. RDF can be held in several different file formats (i.e. .rdf, 

.xml, .nt, .owl, .ttl).  



14 

 

• Triple Store – A specialized database used for the storing and retrieving of RDF statements. 

Every record in the database must follow the triple format of subject-predicate-object. A 

triple store can also be referred to as an ‘RDF Data Store’ as well as an ‘RDF Database’ 

[24]. 

• SPARQL Endpoint9 – A web service interface for human or machine users to provide 

SPARQL queries and receive results. SPARQL endpoints are important for Linked Data 

since they allow datasets to be publicly accessible. 

In addition to RDF, OWL, and OWL-DL, the SW community provides tools to process 

OWL semantics and RDF data. Jena10 emerged as a Java framework for building applications and 

providing a programmatic environment for RDF and OWL. Reasoners (e.g., Jena ) can infer new 

facts about the designed ontology and form a set of asserted axioms. RDF databases, such as 

Virtuoso11 and AllegroGraph12, are used to materialize and store RDF triples. SPARQL is an RDF 

query language, that is, a semantic query language for databases able to retrieve and manipulate 

data stored in RDF format. 

2.3 Knowledge Graphs 

A graph is one of the fundamental data abstractions in computer science. Virtually every 

graph application needs to store and query the graph. The knowledge graph is a virtual data layer 

on top of the existing databases or data sets to connect all data—whether structured or 

unstructured—at scale [25]. KGs contain a large amount of prior knowledge but can also 

effectively organize data. Primarily, a knowledge graph represents, among other things, a model 

of a knowledge domain created by experts using intelligent algorithms in the machine learning 

[25]. A knowledge graph is a structured representation of facts, consisting of entities, relationships, 

 

9 https://www.w3.org/wiki/SparqlEndpoints 
10 https://jena.apache.org/ 
11 https://virtuoso.openlinksw.com/ 
12 https://allegrograph.com/ 

https://www.w3.org/wiki/SparqlEndpoints
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and semantic descriptions. Entities can be real-world objects and abstract concepts, relationships 

represent the relation between entities, and semantic descriptions of entities, and their relationships 

contain types and properties with a well-defined meaning. They have been widely used for 

question-answering systems, search engines, and recommendation systems. All these facets rely 

on the support of knowledge reasoning over knowledge graphs. Knowledge reasoning over 

knowledge graphs aims to identify errors and infer new conclusions from existing data. New 

relations among entities can be derived through knowledge reasoning and can feed back to enrich 

the knowledge graphs, and then support the advanced applications. Considering the wide 

application foreground of knowledge graphs, the study of knowledge reasoning on large-scale 

knowledge graphs has become one research focus in natural language processing in the past few 

years [26]. 

The term knowledge graph is often used as synonymous with knowledgebase however, 

there is a difference. Knowledge graphs can be viewed as a graph due to their graph structure. 

While it involves formal semantics, it also serves as a knowledge base for interpretation and 

inference over facts [27, 28]. Knowledge-aware models benefit from the integration of 

heterogeneous information, rich ontologies and semantics for knowledge representation, and 

multi-lingual knowledge. Ontologies represent the backbone of the formal semantics of a 

knowledge graph. They can be seen as the data schema of the graph and serve as a formal contract 

between the developers of the knowledge graph and its users regarding the meaning of the data in 

it. 

2.3.1 Knowledge Graph vs Linked Data 

A key feature of a KG is that entity descriptions should be interlinked with one another. 

The definition of one entity includes another entity. This linking is how the graph forms, (e.g. A 

is B. B is C. C has D. A has D). Knowledge bases without formal structure and semantics, (e.g. 

Q&A knowledge bases) do not represent a KG.  

Linked Data by definition is structured data that is interlinked with other data. It builds 

upon a suite of web standards such as HTTP, RDF, and IRIs, to allow the linking of data, so that 
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a person or machine can explore this web of data [29]. In [30] linked data was defined as “a set of 

best practices for publishing and connecting structured data on the Web.”. It focuses on 

interconnecting data and resources on the Web by defining relations between ontologies, schemas, 

and/or directly linking the published data to other existing resources on the Web. Linked data 

enables publishing machine-readable interpretation of heterogeneous sources of information. It is 

possible to have an expert system that has a collection of data organized in a format that is not a 

graph but they have to rely on automated deductive processes such as a set of ‘if-then’ rules to 

facilitate analysis. 

Knowledge Graphs are created by describing Entities and Entity Relationships that are 

deployed using Linked Data principles. Knowledge graphs acquire and integrate information into 

an ontology and reasoner can then be used to derive new knowledge [31]. Linked data is generally 

considered fundamental to building a knowledge graph, linked data is not in itself a knowledge 

graph. In other words, linked data is a necessary but not sufficient condition for knowledge graph 

construction. 

2.3.2 Examples of Big Knowledge Graphs 

DBpedia is a crowd-sourced community effort to extract structured content from the 

information created in various Wikimedia projects13. This structured information resembles an 

open knowledge graph (OKG) which is available to everyone on the Web. DBpedia data served as 

Linked Data, which is revolutionizing the way applications interact with the Web. One can 

navigate this Web of facts with standard Web browsers, and automated crawlers or pose complex 

queries with SQL-like query languages (e.g., SPARQL). DBpedia is connected with other Linked 

Datasets through approx. 62 million RDF links. As of June 2021, The DBpedia core KG contains 

more than 850 million triples [32]. 

 

13 https://www.dbpedia.org/about/ 
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Another big KG is the Google Knowledge Graph [33], which enables search for 

information published on the Internet. Google’s Knowledge Graph is not just rooted in public 

sources such as Freebase, Wikipedia, and the CIA World Factbook, it is also augmented at a much 

larger scale and currently contains more than 500 million objects, as well as more than 3.5 billion 

facts about these objects and their relationships. The KG design is optimized to support user 

searches and the resources available on the Web [33]. Figure 2-3 is an illustration of mapped 

concepts in DBpedia. 

 

Figure 2-3: DBpedia concepts map [34] 
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2.3.3 Graph Databases versus Relational Databases 

The following section compares briefly graph databases used by the Semantic Web with 

traditional relational databases. Relational databases exist for many decades and are the database 

technology of choice for most traditional data-intensive storage and retrieval applications. In [35] 

authors presented analytical research and compared relational databases with graph databases. The 

paper found that value retrieval or data processing is very fast in graph databases compared to 

RDBMS. They identified that a graph database performs much better than RDBMS when it comes 

to objectivity, also graph databases excel when it comes to data integration. Relational databases 

are typically closed systems. One approach to data integration relies on creating a global schema 

that captures the interrelationships between the data items represented across these databases. 

However, creating such a global schema is extremely difficult, since schemata and the meaning of 

the data they store will vary from database to database. Another problem with creating such a 

global schema would be its extendibility and evolution in terms of adding new resources 

(databases) or modifying existing schemata. These changes might potentially impact different 

parts of the global schema and might require significant changes to applications using this global 

schema. Because of the challenges in creating a global schema, it is convenient to sidestep this 

issue and convert the relational data into a database with the generic schema of triples, i.e., a 

knowledge graph. The mappings between the attributes are created on an as-needed basis, for 

example, in response to addressing specific business questions, and can themselves be represented 

within a knowledge graph. 

2.4 Vulnerability Databases and Repositories 

To date, software developers have often overlooked security issues throughout the software 

development lifecycle. Existing software design and engineering processes provide little guidance 

about security, and the communication disconnect between software developers and cybersecurity 

experts has led to the widespread introduction of software vulnerabilities [36]. This lack of 
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awareness often results in: 1.) exploitable vulnerabilities in software systems and 2.) developers 

being unaware that their software might have been exposed to a vulnerability.  

The situation is further complicated, with today’s software system depending more and 

more often on external components and libraries, which are managed by external stakeholders.  

Requirements engineers have long recognized the importance of requirements dependency 

analysis to discover and manage critical relationships among requirements [37]. According to [37], 

up to 70% of total software errors are caused by interacting requirements, making requirements 

dependency errors a significant software development and quality challenge. For example, in 2018, 

a data breach caused by a security vulnerability exposed more than 50 million Facebook user 

accounts to malicious attackers [38]. This data breach was caused by two requirements, namely 

“view as” and “upload birthday video” [39]. Although “upload birthday video” was introduced in 

2017, its interdependency with other requirements (especially with “view as”) was not thoroughly 

tested, resulting in a serious security breach. 

VDBs are the result of an effort by the security community to collect information about all 

known security flaws in software. A vulnerability database is a platform for collecting, 

maintaining, and disseminating information about discovered computer security vulnerabilities. 

From the outset, this has been a massive challenge because vulnerability information is generated 

by thousands of sources including software vendors, vulnerability researchers, and software users. 

A VDB describes the identified vulnerability, assesses the potential impact on affected systems, 

and any workarounds or updates to mitigate the issue. VDBs assign a unique identifier to each 

vulnerability cataloged such as a number or alphanumeric designation and make the vulnerability 

information available via web pages, exports, or API. In Table 2-1 we listed some of the well-

known VDBs and the features they provide. 
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Database Established Public API Vulnerability 
CVE14 1999 Yes No 150,799 
NVD15 2005 Yes Yes 159,865 
Vuldb16 1997 Yes Yes 171,574 
SecurityFocus Vulnerability DB17 1999 Yes No From CVE 
SecurityTracker18 2001 No No From CVE 
ZeroDayInitiative19 2005 Yes Yes From CVE 
Exploit Database20 2010 Yes No From CVE 
Japan Vulnerability Notes21 2007 Yes No From CVE 
AusCERT Bulletins22 1993 Yes Yes From CVE 
CERT-EU Security Advisors23 2012 Yes No From CVE 
VulnBD Cyber risk24 2011 No Yes 250,756 

Table 2-1: List of some of the known VDBs 

NVD is one of the most widely used vulnerability databases. It was established in 2005 to 

provide a U.S. government repository for data about software vulnerabilities and configuration 

settings. The objective of NVD was to use open standards to provide reliable and interoperable 

information about vulnerabilities, their impact metrics, technical assessment methods, IT product 

identification data, and references to the remediation assistance [4]. NVD is maintained by the US 

government, strives to accurately document all publicly known vulnerabilities, and effectively 

serves as the industry’s standard. Both commercial security services, and open-source security 

tools depend on the NVD’s vulnerability information to function effectively [40]. 

 

14 https://cve.mitre.org/ 
15 https://nvd.nist.gov/ 
16 https://vuldb.com/ 
17 https://bugtraq.securityfocus.com/ 
18 http://www.securitytracker.com/ 
19 https://www.zerodayinitiative.com/ 
20 https://www.exploit-db.com/ 
21 https://jvn.jp/en/ 
22 https://www.auscert.org.au/bulletins/ 
23 https://cert.europa.eu/ 
24 https://vulndb.cyberriskanalytics.com/ 
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NVD is based on the list of Common Vulnerability and Exposures (CVE) entries. Using 

CVEs and CVE identifiers ensures that unique vulnerabilities are discussed, and that information 

about the same vulnerability is shared by different parties. NVD is often interchangeably used with 

the CVE list but there are some differences between the two resources despite having a very close 

relationship.  

The CVE dictionary was launched in 1999, five years before the NVD, and is run by the 

non-profit MITRE Corporation which was mentioned above. Whereas the NVD is a more robust 

dataset describing the vulnerabilities, the CVE dictionary is more barebones, providing the straight 

facts of the CVE ID number (CVE-year-unique id #), as well as one public link. To put it simply, 

the CVE is the organization that receives submissions and IDs them, while the NVD adds the 

analysis and makes it easier to search and manage them.  

CWE seeks to make vulnerability management more streamlined and accessible. The 

community-developed catalog features hardware and software weaknesses and is described as a 

common language, to be used by security tools, and as a baseline for weakness identification, 

mitigation, and prevention efforts. CWE can be considered a dictionary of software vulnerabilities, 

while CVE is a list of known instances of vulnerability for specific products or systems. NVD 

integrates CWE into the scoring of CVE vulnerabilities by providing a cross-section of the overall 

CWE structure.  

While NVD is the largest and most well-known VDB, is not the only one. The CERT 

Vulnerability Notes Database, includes summaries, technical details, remediation information, and 

lists of affected vendors. Most vulnerability notes are the result of private coordination and 

disclosure efforts. VulnDB is a commercial Risk Based Security vulnerability database. VulnDB 

tracks vulnerabilities in third-party libraries and claims to cover over 47,000 vulnerabilities that 

are not found in CVE or NVD. SecurityTracker is another commercial vulnerability dataset that 

covers vulnerability entries that have CVE-IDs. Another publicly available vulnerability database 
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is exploit-db. The Exploit Database25 is a CVE-compliant archive of public exploits and 

corresponding vulnerable software, developed for use by penetration testers and vulnerability 

researchers. 

2.5 Bug Bounty Programs 

Whether it is a small or a large organization, internal security teams require an external 

audit from other real-world hackers to test their applications for them. An increasingly popular 

approach to identifying vulnerabilities in software is to offer rewards to security researchers that 

are external to an organization (“hackers”) to find and disclose vulnerabilities [3]. Such bug bounty 

programs, also known as vulnerability rewards programs are crowd-sourced mechanisms that 

allow companies to pay hackers individually for their work in identifying vulnerabilities in their 

software. Application vendors pay (bounty) hackers to detect and identify vulnerabilities in their 

software, web applications, and mobile applications. These bounty hunters produce vulnerability 

reports and send them to the company that owns the program to fix those flaws quickly. If the 

report is accepted by the company, the reporter gets paid [41]. 

Public bug bounty programs  

These programs are open to anyone who wants to participate. This program may prohibit some 

participants based on their reputation and track record. In general, anyone can participate in a 

public bounty program, which specifies the scope, the rules of engagement, as well as the bounty 

guidelines. 

 

 

 

25 https://www.exploit-db.com 
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Private bug bounty programs  

Invite-only programs are available for selected participants, often selected based on their skill 

level, experience with the particular application, and other statistics.  

There are a few differences between a public and private program. Conventionally, 

programs tend to start as private and over time evolve into public programs. This is not always 

true but, mostly, businesses start a private bug bounty program and invite a group of researchers 

or developers to test their applications before the program goes public to the community. Often, 

companies will not open their programs to the public, to allow them to control the hacker activity 

in the sections that are critical to the organization. This reduces the number of low-severity 

vulnerabilities in out-of-scope applications. Many organizations use also this approach to verify 

their security posture.  

2.5.1 Bug Bounty platforms 

Bug bounty platforms manage bounty programs for different companies, including 

advertisement and matching of new bounties with hackers/bounty hunters, and managing the 

reward payments. Some of the most popular public platforms are listed below. 

HackerOne 

 HackerOne26 is one of the major vulnerability collaboration and bug bounty hunting platforms 

that connect companies with bounty hunters. It was one of the first start-ups to commercialize and 

utilize crowd-sourced security and hackers as a part of its business model. By May 2020, 

HackerOne has made a total of $100 million in the bug bounty payments [42], with half of 

HackerOne’s bounties being paid just in 2019, and  Gartner projects that by 2022,  50%  of 

enterprises will employ crowdsourced cybersecurity [43]. 

 

26 https://hackerone.com/ 
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Bugcrowd 

Bugcrowd27 Inc. is another leading in the crowd-sourced cybersecurity field. The company has 

developed a coordination platform that connects businesses with security researchers to test their 

applications [43]. 

Synack 

Synack28 includes a vulnerability intelligence platform that automates the discovery of exploitable 

vulnerabilities for reconnaissance and turns them over to the company's freelance hackers to create 

vulnerability reports for clients. Synack is used by the top 25 enterprise software start-ups [44] 

  

 

27 https://www.bugcrowd.com/ 
28 https://www.synack.com/ 
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3A Methodology to Establish a 
Knowledge Graph for Software 
Artifacts 

Software development involves software artifacts that are not limited to source code (e.g., 

build scripts, documentation, issue trackers), created by different stakeholders and used during 

different phases of the development process. The main issue is that these artifacts have remained 

in information silos with limited support for knowledge sharing and reuse across artifact 

boundaries. The Mining software repository community has addressed this problem by making 

historical data found in these knowledge resources not only actionable data, but also improving 

the accessibility and traceability of these resources. Various techniques have been applied, such as 

the machine learning [45, 46], information retrieval [47], and summarization techniques [48] to 

assist development teams during software analytics tasks including code search, duplicate bug 

report detection, traceability link recovery [49].  

Another more recent research avenue to link software artifacts is knowledge graphs that 

are used to model software artifacts. In [50] a methodology is introduced to locate source files, 

given a natural language description of bugs that uses a knowledge graph. Another approach was 

extracting and indexing artifacts to form a knowledge graph. Also, [51] proposed to construct a 

knowledge graph of a code repository to create links between issue reports and corresponding code 

commits. 

Chapter 3 
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In this research, we build upon this existing research and introduce a new methodology 

that takes advantage of knowledge graphs to provide a standardized knowledge representation to 

support the linking and inference of new knowledge across software artifact boundaries. More 

specifically, our methodology integrates knowledge resources found in the software vulnerability 

domain, such as VDBs and bounty programs. The goal of our proposed methodology is to provide 

a step-by-step process of constructing such a knowledge graph. 

Developing such a vulnerability knowledge graph is an iterative process since the 

ontologies used for the data representation have to be sufficiently expressive and flexible to allow 

knowledge reuse and sharing, as well as for the inference of new knowledge to support different 

SE tasks. In this chapter, we walk through the basic steps of our methodology, as illustrated in 

Figure 3-1. These steps include the selection and acquisition of knowledge resources (Section 3.1), 

knowledge modeling process (Section 3.2), data extraction (Section 3.3), data cleaning and 

preprocessing (Section 3.4), the population of the knowledge graph (Section 3.5) and how this 

unified knowledge model can be used to support various software vulnerability related software 

analytics tasks (Section  3.6). Also, the evolution of the knowledge model will be addressed 

(Section 3.7) 

 

Figure 3-1: KG development process 

 



27 

 

3.1 Selection and acquisition of knowledge resources (Step #1) 

As discussed throughout the thesis, vulnerabilities and weaknesses in software systems are 

one of the primary causes of security threats and breaches. These vulnerabilities not only affect 

the usability of these affected systems, but software productivity and competitiveness are also 

increasingly dependent on the successful management of vulnerability information. As discussed 

earlier (Chapter 2), various resources exist to manage and centralize vulnerability-related 

information that are presented in Figure 3-2.  

 

 

Figure 3-2: Schematic KG view 
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The key to any successful knowledge modeling approach is to (1) identify knowledge 

resources that are rich enough to provide meaningful information for specific application contexts, 

that are (2) reliable in terms of the quality of the information they provide, and they are (3) readily 

accessible. Here we explain the key factors for our purposes. 

Richness: We define a knowledge resource to be rich enough if it contains or references 

information related to known vulnerabilities, information that can be used to classify 

vulnerabilities or it can be used to capture potential effects of known vulnerabilities on software 

systems. 

Reliability: For the reliability of an information resource, we only consider resources for 

which the content is actively managed. For example, resources that are managed as part of a 

community effort (e.g., VulDB), by the government (e.g., NVD), an organization (e.g., 

HackerOne), or a combination of these. Such information management should include but is not 

limited to the validation of information stored in the information resource, regularly updated, 

information consistency (e.g., removal of outdated, no longer valid information). 

Accessibility: We only consider data sources that are readily (publicly) accessible either 

through a Web interface/API, as a dataset in a standard representation format (e.g., JSON), or 

which can be extracted (crawled) using existing libraries (e.g., libraries.io). 

Ontologies can capture highly complex ideas and business logic by providing not only a 

standardized approach for representing knowledge, but also supporting the inferences of new 

knowledge using SW reasoners to infer symmetry, asymmetry, inversion, composition, and 

transitivity relations. Any ontology design effort should be based on an incremental modeling 

approach, where one should identify a few critical questions that the ontology needs to answer. 

Modeling for only a few use cases will provide immediate value to the end-users (by having a 

working model implemented quickly) and allows optimizing the ontology for these specific use 

cases. This is a contradictory approach with modeling a full domain which typically leads to an 

ontology design that might be too complex and not optimized for knowledge interference and 

linking of sub-ontologies.  
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We identify the following initial four use cases which our knowledge graph should support: 

1. Scanning for vulnerabilities in a project or any of its direct or indirect dependencies 

2. Measuring the number of projects potentially impacted by a bounty hunter with considering 

the number of dependents each project has 

3. Combining HackerOne reports with CWE records to find areas of expertise for a bounty 

hunter by counting the number of CWE-IDs 

4. Being able to integrate data from this KG to other remote graphs 

Knowledge graph provides us with the ability to facilitate knowledge inferences such as 

symmetry, asymmetry, inversion, composition, and transitivity relations. We then further refine 

and enrich the initial design of these ontologies by adding additional relations and properties. This 

enables us to have a semantic model that is rich enough to allow the inference of knowledge using 

basic SW reasoning (RDFS++), which includes inferences such as sameAs inverseOf, 

TransitiveProperty. Protégé29 is the most well-known ontology editor, developed by Stanford 

University in the 1980s [52]. Protégé supports features of OWL and RDFS and also includes 

various reasoners to test and query the ontology. After modeling the ontology in Protégé is 

completed, the ontology will be imported to our triple-store. 

3.2 Schema Extraction and Ontology Design (Step #2) 

Given that ontologies have been used for years, many ontologies have already been created 

to model various domains. Reusing an existing ontology will not only reduce the time it takes to 

design an ontology but also contributes towards the standardization and reuse of knowledge 

models. The Linked Open Vocabularies30 portal, provides a collection of open-source vocabularies 

and ontologies such as DBpedia31, Friend of Friend, or Schema.org [53]. These general ontologies 

 

29 https://protege.stanford.edu/ 
30 https://lov.linkeddata.es/dataset/lov/ 
31 https://www.dbpedia.org 
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can be used to extract alternative descriptions and labels for defining classes and relationships.  

Our knowledge modeling process consists of three major steps and is inspired by the methodology 

introduced by Noy et al. [54], as well as a bottom-up knowledge modeling approach similar to the 

one used by Van der Vet et al. [55]. We first perform a manual review of the documentation from 

selected vulnerability-relevant software artifacts and existing ontologies to identify and extract 

concepts and properties used by the individual resource. Next, we manually inspect these extracted 

concepts and properties for a resource to derive an initial version of the corresponding system-

specific ontologies. These system-level ontologies are not yet optimized in terms of knowledge 

reuse, integration, or inference of new knowledge. For the model optimizations, we apply an 

iterative bottom-up modeling approach. During this bottom-up modeling approach, we identify 

and extract shared concepts and attributes from these system-specific ontologies into different 

layers of abstraction (upper ontologies). During this ontology design step, we also consider our 

different use cases and introduce additional relations, constraints, and properties to be able to take 

advantage of semantic web reasoning services.  

3.3 Data Extraction (Step #3) 

After establishing the knowledge graph structure, data (facts) must be extracted from the 

original knowledge resources. Data extraction is therefore the first step in a data ingestion process 

called ETL (extract, transform, and load). The goal of ETL is to prepare data for analysis. The 

facts are extracted from (public) repositories or SaaS (Software as a Service) platforms. Since we 

consider numerous artifacts that contain data at various abstraction and representation types, 

different data extraction methodologies are required. As part of the extraction process, data has to 

be extracted from files, web services, or using scraping scripts directly from web pages. While 

many of the data sources (e.g., VDBs) are already stored in a structured and machine-readable 

format, other resources will require additional techniques (e.g., Information Retrieval [56]) to 

extract the facts from their unstructured representations. As part of the extraction process, one also 

must consider how the facts are updated by the various knowledge providers to ensure the long-
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term relevance and consistency of the extracted data. In general, there are three primary approaches 

provided by the knowledge resources: 

• Full extraction: Knowledge resources provide regular complete data dumps. These 

snapshots/data dumps contain the full data history. However, they will require additional 

post-processing to extract recent updates or to repopulate the knowledge graph (after 

performing a full data cleaning on the often very large data dump) with all the facts.   

• Incremental extraction: Some data sources do provide regular incremental updates to 

their knowledge base. During the extraction process, one must identify and propagate 

changes. One drawback of incremental extraction is that it may not be able to detect deleted 

records in the source data. Another drawback is that the data is updated on-demand only 

(no real-time data synchronization).  

• Update notifications: The ability to subscribe to knowledge changes and to be notified by 

the knowledge resources if new facts/data become available. All we need to do is to handle 

published data updates. This data extraction approach has several advantages in terms of 

keeping the modeled knowledge resources up-to-date. Unfortunately, many of the 

knowledge sources do not yet provide this feature. 

3.4 Data Pre-processing (Step #4) 

After the fact extraction, some data pre-processing and data cleaning will be required to 

improve data quality. Data quality is affected by data inconsistencies, data duplication as well as 

general noise in the data (non-relevant or even wrong data) that needs to be dealt with during the 

data processing step. If data quality is low, later analysis of this data will be affected. Data cleaning 

is a process of polishing the data and removing noise in a dataset. While data cleaning is not a 

standardized process and depends on the data source, the following processing steps are generally 

performed: 

A) Removal of duplicate or irrelevant facts. Duplicate observations will happen most often 

during data collection. When you combine data sets from multiple places, scrape data, or 
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receive data from clients or multiple departments, there are opportunities to create duplicate 

data. The removal of duplication is one of the largest areas to be considered in this process. 

Irrelevant observations are when you notice observations that do not fit into the specific 

problem you are trying to analyze. 

 

B) Fixing structural errors: Structural errors are when you measure or transfer data and notice 

strange naming conventions, typos, or incorrect capitalization. These inconsistencies can 

cause mislabeled categories or classes. For example, you may find “N/A” and “Not 

Applicable” both appear, but they should be analyzed as the same category. 

 

C) Filter unwanted outliers: Often, there will be one-off observations where, at a glance, they 

do not appear to fit within the data you are analyzing. If you have a legitimate reason to 

remove an outlier, like improper data entry, doing so will help the performance of the data 

you are working with. This step is needed to determine the validity of that number. If an 

outlier proves to be irrelevant for analysis or is a mistake, it may be removed. 

 

Data transformation is the process of converting data from one format or structure into 

another. Transformation processes can also be referred to as data wrangling, or data munging, 

transforming, and mapping data from one "raw" data form into the format required at the next step 

of our methodology – the population of the knowledge graph (triplestore). 

 

3.5 Knowledge graph population (Step #5) 

In this step, the pre-processed data (facts) are transformed into semantic triples based on 

the RDF framework. The transformation and population process rely on the generation of unique, 

de-referenceable, and HTTP-resolvable URIs for the resulting triples. We use Python and its third-



33 

 

party RDFLib32 to transform the extracted facts into RDF data. RDFLib is an RDF library for 

Python which includes a SPARQL [23] implementation. The library also contains both in-memory 

and persistent Graph back-ends. RDF data is a graph where the nodes are URI references, Blank 

Nodes, or Literals. In RDFLib, these node types are represented by the classes URIRef, BNode, 

and Literal. URIRefs and BNodes can both be thought of as resources, such as a person, a 

company, a website, etc. A BNode is a node where the exact URI is not known - usually a node 

with identity only with other nodes. A URIRef is a node where the exact URI is known. In addition 

to representing some subjects and predicates in RDF graphs, URIRefs are always used to represent 

properties/predicates and Literals represent object values, such as a name, a date, a number, etc. 

Using RDFLib we construct the graph in-memory and persistent storage of these graphs are 

achieved by a triplestore. Being a graph database, triplestores store data as a network of objects 

with materialized links between them. This makes RDF triplestores the preferred choice for 

managing highly interconnected data. Triplestores are more flexible and less costly than a 

relational database and allow for the construction of large knowledge graphs. Such an RDF 

database often called a semantic graph database, is also capable of handling powerful semantic 

queries and supports the use of inference services for uncovering new information out of the 

existing relations. 

3.6 Software Analytics Queries (Step #6) 

There have been many works on creating software analytics tools or services to support 

software analysis tasks [57-59]. However, their applicability is often limited for several reasons. 

Firstly, these tools have remained information silos by relying on their own proprietary data 

collection and data models. While these models work well for supporting tool-specific analytics 

tasks, they limit their ability to share, reuse and integrate data and analysis results with other tools 

and knowledge resources. Secondly, the underlying knowledge representations used by these 

 

32 https://rdflib.readthedocs.io/ 
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analysis approaches lack support for a seamless integration of new knowledge resources or the 

ability to deal with incomplete data; and thirdly, the extensibility and flexibility of the analysis 

support provided by existing tools is often limited by the underlying knowledge representation.  

In our research, we take advantage of the Semantic Web and its technology stack (e.g., 

ontologies, reasoning services) and establish a unified knowledge graph representation to 

model software vulnerability-related resources. Based on this knowledge graph, we can now 

extend and integrate this knowledge with other (heterogeneous) resources to grant a more flexible 

software analytics analysis approach. Users can either define their software analytics service 

using SPARQL [23] which is a standard semantic query language to retrieve and manipulate data 

stored in the RDF format or reuse already predefined queries. 

3.7 Knowledge Graph evolution 

The last step of our methodology is related to the evolution of the knowledge graph. This 

is an iterative process within our ontology design that evolves as new vulnerability-related 

resources become available and will be included in our knowledge model. With the inclusion of 

new concepts and properties to the domain ontology to capture new vulnerability-related 

dependencies and semantics, there is a possibility that existing domain concepts and properties 

will be demoted to the lower layer. One of the key benefits of using ontologies is that they can 

easily be extended, by adding new relationships and concepts and linking them to the existing 

ontologies. As a result, our current ontologies will evolve as new knowledge becomes available, 

however, given the native support of ontologies to support the extension to the knowledge base, 

these changes will not impact our already existing queries or analysis services. Instead, it will 

create new opportunities to introduce other novel analysis services and a further extended 

knowledge base. 
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4A Knowledge Graph for Software 
Vulnerability-Related Resources 

In this chapter, we illustrate how our methodology (introduced in Chapter 0) can be applied 

to establish a knowledge graph for the domain of known software vulnerabilities. More 

specifically, we show how our methodology can be used to create a standardized and unified 

representation of software vulnerability-related artifacts and knowledge resources, as is shown in 

Figure 4-1. This unified knowledge representation will then form a base for the introduction of 

novel software analytics services that can guide developers, maintainers, and security experts in 

managing known vulnerabilities.  

 

 

Figure 4-1: Overview picture of the actual process applied to vulnerabilities 

 

Chapter 4 
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4.1 Selection of Software Vulnerability-Related Resources 

As previously discussed, various repositories have been introduced to manage known 

vulnerability information (e.g., NVD, CWE, bug bounty repositories). In addition, other resources 

such as build and dependency management systems, source code repositories, or even more 

general information resources (e.g., Wikipedia) can provide useful insights for security experts 

and developers. While these knowledge resources might not capture directly known software 

vulnerability information, they can, when integrated with VDBs, provide new insights. To 

illustrate how our methodology can be applied to support the modeling of these knowledge 

resources related to known software vulnerability, we select resources that provide different views 

on software vulnerabilities. We then model these resources and integrate them as parts of our 

software vulnerability knowledge graph.  

Vulnerability Databases 

 NVD is the most widely used VDB and collects vulnerability information from various 

interrelated vulnerability databases like CVE, and CWE.  Every entry in the NVD database is 

identified by a unique identifier, a CVE ID, which is also used as a standard reference to NVD 

vulnerabilities in other resources. A typical vulnerability entry in NVD consists of a vulnerability 

identifier, a description of the vulnerability, a list of software and their versions in which this 

vulnerability is found, and a vulnerability severity score (CVSS). 

Other than NVD, we included Snyk [5] as a second example of a VDB, which allows us to 

illustrate how our modeling approach can support and integrate domain knowledge from different 

resources. The Snyk VDB captures and describes also known vulnerabilities using a CVE ID. In 

addition, Synk provides services to scan, prioritize, and fix security vulnerabilities in source code. 

We use the CVE-ID as our main property to link and integrate different VDBs.  
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Bounty platforms 

Bug bounty programs have emerged as an integrated part of the secure software development 

lifecycle to aid security teams in the release and maintenance phases. Among the many bounty 

platforms introduced in the last decade, HackerOne was founded in 2013 and is one of the best-

known bounty platforms [43]. HackerOne includes two types of information: 1.) the program 

definition where the organizer publishes bounty rules including policy, scope, reward, etc. 2.)  

hacker activities (Hacktivity reports) that describe the bounty hunter activities and potential 

vulnerability discovered by the hacker that needs to be evaluated by the organizer, as well as 

information about the bounty hunter. Once a new vulnerability is discovered, it might be assigned 

a CVE-ID. 

Dependency Management tools 

Dependency and build management tools [60, 61] are used to resolve and manage direct and 

transitive system dependencies during the build process. Project dependencies can be found within 

a project source code (e.g., GitHub), a build management system (e.g., Maven), or package 

managers (e.g., NPM). To populate our ontology, we use another service called libraries.io33 that 

monitors packages across 32 package managers while it provides an API to search and extract 

dependencies of libraries monitored by the platform.  

3rd Party Knowledge graphs or Linked data 

One of the key benefits of knowledge graphs is the ability to integrate already existing knowledge 

graphs or linked data resources, to allow users (e.g., humans or machines) to explore and infer new 

knowledge across a set of combined knowledge resources. We illustrate this integration of already 

existing linked data and knowledge graphs by linking our own knowledge graph with DBpedia, 

which is the linked data representation of the Wikipedia portal. These third-party knowledge 

 

33 https://libraries.io/ 
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integrations facilitate establishing a direct link between the knowledge resources using shared 

concepts or properties. DBpedia is a publicly available linked data resource that provides a 

SPARQL query endpoint to access the knowledge graph, We also attempted to integrate with the 

Google Knowledge Graph [33]. However, the Google Knowledge Graph uses a RESTful search 

API, limiting the ability to fully integrate this knowledge graph semantically with other knowledge 

graphs. 

4.2 Establishing Initial System-Level Ontologies 

In this section, we discuss the initial system-level ontologies, which we created as part of 

our modeling approach. We established these initial system-level ontologies, by transforming the 

extracted schemata into their corresponding ontology components, namely concepts, properties, 

and relations. It should be noted that these initial system-level ontologies are neither optimized in 

terms of their semantic expressiveness (reasoning support) nor for knowledge reuse and linking 

across ontologies. 

4.2.1 Vulnerability-Related Ontologies 

The vulnerability resources for which we derived system-level ontologies are CWE, CPE, 

and two VDBs (NVD and Snyk) which are explained as follows. 

CWE 

The CWE is a category system for hardware and software weaknesses and vulnerabilities which is 

available on the Mitre website34. The downloaded file is an XML that holds all the metadata 

available for weaknesses. At the time of writing, there are 947 weaknesses listed in CWE V4.6. 

 

34 https://cwe.mitre.org/data/downloads.html 



39 

 

Figure 4-2: shows a sample CWE record with all the available properties used to describe 

weaknesses.  

Each CWE has several primitive attributes (e.g., name, date, status, etc.) that we store as a 

data attribute as well as some relational attributes that link weaknesses to each other. For instance, 

CWE-943 (Improper Neutralization of Special Elements in Data Query Logic) is a parent of CWE-

89 (SQL Injection), and CWE-89 is a parent of CWE-564 (SQL Injection: Hibernate). A query for 

vulnerability with a weakness CWE-943 will now not only return vulnerabilities with CWE-943 

but also vulnerabilities in all its subcategories CWE-89 and CWE-564. 

 

Figure 4-2: CWE XML Schema (partial view).  
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Our CWE system-level ontology (shown in Figure 4-3:) is a direct mapping from the CWE XML 
schema. In addition, we introduce two concepts which are subclasses of the General concept of 
Software Weaknesses. The concept of CWE Attributes and its subclasses capture general 
information related to the weakness (e.g., operating system, technology, languages). These CWE 
Attributes are mostly derived from main concepts in other ontologies with their logics. We reuse 
these concepts to primarily connect our ontology to the linked data and secondly, to use predefined 
data in our ontology. The CWE concept uses CWE Attributes as object properties and holds 
other attributes (e.g., submission date) as data properties. 

 

 

Figure 4-3: CWE - System Level Ontology 

Figure 4-4 shows a partial view of our populated CWE ontology and how it captures the 

dependencies among CWEs. It should be noted that the relations (e.g., parentOf/childOf) are 

inverse. Properties have a direction from domain to range. The owl:inverseOf construct can be 

used to define a symmetric property.  
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Figure 4-4: A partial ABox view of the initial CWE system ontology 

CPE 

CPE represents a directory of projects and their versioning information. The directory was 

introduced to eliminate ambiguity among project references. 

 

Figure 4-5: A sample CPE record 
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Each CPE has a unique, standardized URI that can be de-referenced for later processing. The URI 

combines 13 attributes, separated by a colon and consists of the following parts. 

<standard>:<standardVersion>:<part>:<vendoe>:<product>:<version>: 

<update>:<edition>:<language>:<software_edition>:<target_software>: 

<target_hardware>:<other> 

For our CPE system-level ontology, we model these attributes as properties and attributes of our 

CPE class.  

 

 

Figure 4-6: Initial CPE System Level Ontology 

As shown in Figure 4-5: each CPE includes a list of references in addition to URI and titles. 

These references are URIs to the product-related webpages, including in many cases the link to 

the source code repository.  

Figure 4-6: shows the corresponding CPE system level ontology, where the Software 

Products concept captures the CPE title and the core CPE properties, as well as the detailed 

reference to each CPE. It should be noted that in Figure 4-6: we omitted properties and attributes. 

In the original CPE repository, many products have more than one URI due to having different 

versions or environments in a component that might be deployed. To facilitate further processing, 

we transform CPE information and extract a reference that is common for all different versions of 

a single product. The software product will provide a standardized reference to the software 



43 

 

product, while the CPE instance, will include the CPE specific version information (Figure 4-6:). 

Figure 4-7: shows a partial ABox view of the initial CPE system ontology.  

 

Figure 4-7: A partial ABox view of the initial CPE system ontology 

 

NVD 

NVD is the most widely used publicly available VDB for known vulnerabilities. Figure 4-8 shows 

a sample of NVD record. NVD uses CVE-ID to identify vulnerabilities (CVEs) and maintain a 

reference to the original record by MITRE. MITRE Engenuity (or simply Engenuity) was launched 

in 2019 "to collaborate with private sectors on solving industrywide problems with cyber defense" 

in collaboration with corporate partners [62]. The foundation created the Center for Threat-

Informed Defense. In addition, each CVE includes a problem-type section that lists all weaknesses 

from the CWE database that apply to this CVE. The reference property includes a list of external 

web resources that contain additional information about the vulnerabilities. The configurations 

property is used to match a vulnerability to a list of CPE records and a software product (including 

the affected versions, platforms, and other product-specific attributes).  

 



44 

 

 

Figure 4-8: Partial view of the CVE Schema 

 



45 

 

For our initial system-level NVD ontology (shown in Figure 4-9), we map a subset of the 

available NVD information that is required for our use cases. The modelled information includes 

the following data properties: CVE-ID, publish date, and score, as well as object properties such 

as CWEs, CPEs. The current ontology can easily be extended to include all NVD information.  

 

Figure 4-9: NVD System Level Ontology 

Figure 4-10 shows a partial ABox view of our populated NVD system-level ontology and 

the information we capture in this ontology.  

 

Figure 4-10: A partial ABox view of the initial CVE system ontology 
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Snyk 

Snyk data schema is similar to the one use by NVD by including both CVE and CWE. Snyk 

provides its own scoring system to classify and measure risk factors. Snyk does not offer an API 

endpoint to fetch vulnerabilities. The extraction of vulnerability information in Synk is limited to 

the portal website, by scraping the web pages. Figure 4-11 illustrates how the Snyk system level 

ontology relates to other ontologies in our ontology hierarchy. 

 

Figure 4-11: Snyk initial design 

Figure 4-12 shows a partial ABox view of our populated SNYK system-level ontology and 

the information it captures. 

 

Figure 4-12: Snyk initial example 
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HackerOne  

Bug bounty programs offer monetary rewards to ethical hackers (bounty hunters) for successfully 

discovering and reporting a vulnerability or bug to an application’s developer. Figure 4-13: shows 

a partial view of a sample record (using “Nextcloud”) that is available on the HackerOne portal. 

Each record on HackerOne contains its status and some minimum reward information, as well as 

general bounty descriptions that include the program being part of the bounty. The hacker activity 

for a particular bounty is posted as HackerOne hacktivity reports, which contain the title, date, 

status, and reporter. In the HackerOne model, we have one program entity and one hacktivity entity 

to map to projects. We also model users who reported a potential vulnerability as bounty hunters 

in this ontology. 

 

Figure 4-13: A sample HackerOne record 
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HackerOne does not provide an official API for public access to its programs and to create 

data dumps. The website35 therefore needs to be crawled to extract the reported vulnerability and 

hacktivity information. The challenge with scraping the website is that the content provided for 

each hacktivity report is not standardized, making it difficult to extract consistent data from each 

report. 

 

 

Figure 4-14: Bug bounty System-level ontology 

 

The initial design of our system-level ontology for HackerOne is shown in Figure 4-14. 

We face a few challenges when creating the initial HackerOne concept. While extracting some 

information related to the bounty concept (policy, collection of hackers reports) was a 

 

35 https://hackerone.com/ 
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straightforward task, extracting the content of the Hacktivity reports is quite more difficult due to 

their unstructured representation (e.g., specifying details of the vulnerable components/systems 

such as versioning information). Also, there is no consistency in terms of the type of information 

provided between Hacktivity reports. Therefore, we treat most of the descriptions found in a 

Hacktivity report currently as a single text property. 

 

4.2.2 Build Dependency Ontology 

Libraries.io 

Libraries.io36 is a service portal that indexes data from 5 million packages extracted from 32 

package managers. The website monitors package releases, analyses each project's code, 

community, distribution, and documentation and also maps relationships between packages when 

they are declared as a dependency.  

This type of dependency information is usually accessible through build management tools 

(e.g., Maven), package managers (e.g., NPM), or source code repositories (e.g., GitHub). For the 

build management ontology design, we reuse the build ontology introduced originally in [63], 

which provides support for the modeling and integration of different build management systems. 

For the data extraction process, instead of querying each build management system 

separately, we used the libraries.io portal. Libraries.io is an open-source web service that lists 

software development project dependencies. Figure 4-15 shows a partial record of the information 

libraries.io provides for each individual product. The extracted information was then converted  to 

our graph schema for import (Figure 4-16). In addition, libraries.io also provides another API to 

retrieve product dependencies. 

 

36 https://libraries.io 
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Figure 4-15: Data extracted from library.io 
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Figure 4-16: A partial ABox view of the initial Libraries.io system ontology 

Figure 4-17 shows an example of the dependencies that we extracted and modeled for the 

sample library “deep-defaults”. For each project, we retrieve these transitive dependencies, with 

the outgoing connections (edges) being dependencies and incoming connections (edges) being 

dependents. It should be noted that for the dataset which we used in our case studies, we limited 

the transitivity dependencies to 5 nesting levels.  

 

Figure 4-17: Dependencies for “deep-defaults” library 
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4.3 Ontology Abstraction and Refinement 

As discussed earlier, this thesis contributes by not only modeling individual knowledge 

resources as ontologies, but also by integrating these ontologies in a unified representation 

(knowledge graph). As a part of our modeling approach, we take the advantage of key premises of 

SW which are its ability to share and extend the existing knowledge. The resulting unified 

representation allows us to eliminate the information silos these resources have traditionally 

remained in and turn them into information hubs. These information hubs enable applications and 

analytics services to reuse and share their knowledge across individual repository boundaries.  

In this section, we discuss in more detail, how we integrate our initial system-level 

ontologies (Section 4.2). More specifically, we refine our system-level ontology designs to 

facilitate their integration with the ontologies introduced by Alqahtani et al. [7]. They introduced 

SEVONT, an abstraction hierarchy of ontologies covering various software artifacts, including 

ontologies for software vulnerability databases [7]. SEVONT also proposes a unification model 

for VDBs using linked data that facilitates also the reconciliation of VDBs. In what follows, we 

discuss in more details, the modifications and optimization we made to our initial system ontology 

designs, as well as changes to the SEVONT framework in order to integrate our ontologies. More 

specifically, we not only extend these ontologies with additional system-level repositories (e.g., 

bounty resources) and non-specialized resources (e.g., DBpedia), but also refine the ontology 

design to provide a knowledge graph that goes beyond the conceptualization of a domain of 

discourse by focusing on the inference of new knowledge to support our use cases. 

4.3.1 Abstraction Overview 

For the modeling of abstractions, we followed the same bottom-up knowledge modeling 

approach used in [43]. First, we modeled system-specific concepts (Section 4.2) which we now 

evaluate and refine to determine if certain concepts can be promoted to higher-level shared 
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concepts that finally will be located in upper-level ontologies (Figure 4-18). This abstraction 

mechanism allows not only for the reuse of concepts and properties across ontologies, but also 

facilitates linking (shared concepts) of the ontologies. The resulting four-layer modeling hierarchy 

is similar to a metadata modeling approach introduced by the Object Management Group 

(OMG)37. 

 

Figure 4-18: SEVONT Ontology Pyramid [65] 

  

 

37 http://www.omg.org/ 
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4.3.2 Design Details 

In what follows, we discuss how each of these layers differs in terms of their purpose and 

design rationale. The discussion is based on the original ontology abstraction hierarchy presented 

in [64]. 

General Concept Layer 

Classes in the top-layer model correspond to meta-meta level ontologies—core concepts shared 

and extended by the lower modeling layers. Examples of such core concepts are Product, 

Organization, Activity, Stakeholder, and Artifact. All concepts in this layer are 

subclasses of the SeOn Thing class (a subclass of owl:Thing, which captures the set of all 

individuals within our framework). Similarly, the datatype properties and object properties in this 

layer are generic and shared across the abstraction layers. For example, the dependsOn object’s 

property captures the generic relationship between things—one Product depends on another 

Artifact.  

Domain-Spanning Concepts 

In this layer, concepts describe the knowledge that is typically inferred from two or more 

ontologies. For example, the measurements ontology acts as a general linking mechanism between 

ontologies. The ontology includes two basic concepts, BaseMeasure and DerivedMeasure. 

Adequate BaseMeasure instances are the size and numberOfDependencies in a Product. 

DerivedMeasure captures an aggregation of values from different subdomains. For example, the 

DerivedMeasure class includes the numberOfVulnerabilitiesPerLibrary instance, which is 

computed from measures collected from the source code, history, build system, and vulnerability 

ontologies. SimilarityMeasure, which is a subclass of DerivedMeasure, captures the similarity 

([0,1]) between any two SeonThing instances.  
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Domain-Specific Concepts 

This layer in the knowledge model captures domain-specific aspects and concepts that are common 

and reused across system-level resources in a particular domain (e.g., domain of dependency 

management systems). At the core of the domain-specific layer, we have several domain 

ontologies: (1) SEVONT, (2) Software Evolution Ontologies (SEON) [64], (3) Software Build 

Systems Ontologies (SBSON), and (4) Bug bounty ontologies.  

Our ontology includes the following important domain concepts: 

• Vulnerability. In software security, a vulnerability refers to a flaw in the system that is 

introduced by reusing vulnerable (external) software components or inadvertent coding 

mistakes by developers (e.g., bad coding practices). 

• Product. Software products are assets of organizations that are the results of a software 

development process (e.g., hardware, artifacts). 

• Attacker. Attackers, either internal or external entities of the system, attack a product to 

perform malicious actions which attempt to break the security of a software system or its 

components. 

• Attack. Attacks are malicious actions designed to compromise the security of a system. 

Security experts analyze these attacks to study the behavior of attackers, estimate the cost of 

attacks and determine their impact on overall system security. 

• Countermeasure. A countermeasure is a mechanism used to protect a system from potential 

vulnerability attacks (e.g., patch development, encryption/decryption enhancement, and 

updated system security configurations). 

 

For example, security databases capture a Vulnerability that has an associated Event. An Event 

often can be further divided into Action and Impact—an attacker exploits a Vulnerability to 

produce an Action, which has an Impact. 
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System-Specific Concepts 

The bottom layer defines concepts that are specific to a knowledge resource and not shared among 

other ontologies. The system ontologies extend domain-specific concepts. For example, the system 

ontology for NVD extends the general SEVONT ontology with a Severity concept, which is 

specific to NVD and is not shared among other VDBs. 

4.3.3 Extensions to the SEVONT Hierarchy 

In what follows, we discuss the changes we made to our initial system-level ontologies to 

support not only their integration in the existing SEVONT ontologies, but also improve knowledge 

reuse and inference of new knowledge. As a part of our modeling process, we extend the layers of 

the original ontology hierarchy by identifying and promoting newly shared concepts (introduced 

by our system-level ontologies) to a higher abstraction layer. Our proposed model reduces concept 

ambiguity and facilitates ontology alignment/matching by determining correspondences between 

ontological concepts. The resulting linked ontologies form a foundation to support the introduction 

of novel analytics services that can guide maintainers and developers in managing known software 

vulnerabilities. An overview of our modified four-layered SEVONG ontology abstraction model 

is shown in Figure 4-19 and is discussed as follows.  

General Abstraction Layer 

For the general abstraction layer, there are no changes to the original ontology design from [53] 

since the provided general abstraction layer already covers the most basic core concepts. Our 

system-level ontologies are all based on the extensions of these already modeled general concepts.  

Domain Spanning Abstraction Layer 

We extended the domain Spanning layer with an activity ontology consists of two concepts: 

activity and reward. These two domain-spanning concepts are not limited to any domain 

and can be reused across many areas. All bounty reports can be considered as results of some 
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activities made by stakeholders with a potential reward. In our context, they are used to capture 

reports and efforts in the bug-bounty domain. 

 

Figure 4-19: Four-layer ontology abstraction model 
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Domain-Specific Abstraction Layer 

At the domain-specific layer, we added two domain-level ontologies:  

(1) Bug Bounty ontology, and  

(2) a wiki ontology.  

These two domain ontologies, model the core concepts found in the Wiki and bug-bounty domain. 

The wiki ontology is an abstract layer for any encyclopedia where a user might find relative 

information about a subject. It includes the concept WikiPage and some core properties and 

attributes. The bug-bounty ontology models the concepts shared among ontologies in the bug-

bounty domain (e.g., HackerOne or BugCrowd.).  Bounty reports are quite common in bounty 

domain and contain detailed descriptions of vulnerabilities that are disclosed to the program 

handlers only and allow them to fix the issues before get published publicly. The report usually 

contains steps to reproduce proof of concept and recommended solutions that leads to identify a 

vulnerability. The domain ontology, therefore, includes two major concepts:  

• Hacktivity is used to report on hacker activity. It also serves as a resource that enables 

hackers to search for reports regarding programs and weaknesses and how these 

weaknesses were exploited in various bounty programs. 

• Status is a concept related to Hacktivity and is used to keep track of the status of 

individual activities. 

System-Specific Layer 

At the System-Specific layer, the most concrete layer of our hierarchy, knowledge specific to a 

particular knowledge resource is modeled. For example, SBSON [65] models the common 

concepts found in the domain of build management systems. There are build system-specific 

ontologies, like Maven, which extend the domain level SBSON to model information specific to 

Maven.   
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Build Management Dependency Graph 

Several build systems exist which provide the users access to both internal components and 

external API dependencies. While their traditional unidirectional dependency models capture build 

dependencies, they restrict users ability to further reason upon this knowledge. For example, using 

the case of Maven, it is currently not possible for a user to identify all components or projects that 

depend either directly or indirectly on a project (Figure 4-20). 

 

Figure 4-20: Unidirectional vs. bi-directional dependencies. [63] 

To overcome the previously discussed modeling challenges, we take the advantage of 

SBSON ontology [63] to model the dependencies in the build systems and source code 

repositories. SBSON extends the initial system-level ontology with support for a bi-directional 

project dependency graph. This bi-directional graph allows us to not only query for all components 

that a project is using (directly or indirectly), but also to identify which projects are directly or 

indirectly using a certain component. For example, using the SBSON dependency model (Figure 

4-20). We can extend now traditional dependency-based impact analysis on project C to not 



60 

 

include all components on which project C depends on (projects D and E), but also identify all 

projects which might depend on project C  - in this example, projects A, F, and G. 

Given this ontology design, it is possible to have system-level ontologies that benefit from 

these bidirectional links by being able to infer knowledge across knowledge resource boundaries. 

For example, the system-level Library ontology (shown in Figure 4-21) extends the SBSON 

ontology, which now allows the Library ontology to also take advantage of the bi-directional 

dependency model captured in SBSON.   

 

Figure 4-21: Maven Ontology Overview 

In what follows. we discuss in more details, some of the design modifications we applied 

to both our initial system-level ontologies (Section 4.2) and SEVONT. 

Linking of Libararies.io with Software Product information (CPE.on) 

A fundamental part of the vulnerability analysis process is to be able to uniquely identify products 

affected by a given vulnerability. As a result of this analysis, we can now identify known issues 

for any software product, as long as the associated product identifier is known. In our modeling 

approach, both ontologies, libraries.io and CPE, have a concept repo_uri which refers to a 

software product. We use this concept to link the libraries.io with the CPE ontology.  
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Figure 4-22. CPE-Library integration model 

Linking of Weaknesses (CWE) with build dependencies (SBSON) 

Based upon the requirements discussed in section 4.2.1 we use the same technique as the 

Dependency Graph section to utilize the reasoning service and infer all possible weaknesses. In 

the CWE ontology, we define properties (provided in Table 4-1) with OWL features. The inclusion 

of these property types allows us to provide a knowledge model which is expressive enough to 

allow for the inference and linking of knowledge across these two ontologies.  

Type of property Type of reasoning supported 

canAlsoBe Transitive 
Symmetric 

childOf Transitive 
Inverse Of “parentOf” 

parentOf Transitive 
Inverse Of “childOf” 

peerOf Transitive 
Symmetric 

Table 4-1: CWE reasoning details 
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Linking Bug Bounty information with known vulnerabilities databases  

We enrich our system-level VDB knowledge graphs by linking them with CWE and bug bounty 

ontologies. These links allow us to infer new knowledge which might not have been directly 

accessible in the individual knowledge resources. The bug bounty repositories include 

vulnerability-related information in the form of hacktivity reports covering potential 

vulnerabilities. These vulnerabilities are disclosed by bounty hunters to the organization or vendor 

who issued the bounty program. However, several inconsistencies can be observed in these reports: 

1) When a hacktivity report is verified as describing a vulnerability, this vulnerability 

might be either disclosed in a vulnerability database (which assigns a CVE-ID to 

the vulnerability) or just reported locally on the bug bounty platform (without a 

CVE-ID).  

2) Even if  a reported vulnerability has been assigned a CVE-ID in the VDB, the 

corresponding hacktivity  report might not be updated with the new CVE-ID.  

Therefore, a vulnerability might be reported in a bounty program with or without a CVE-

ID, even if the vulnerability has been published in the VDB with a CVE-ID.  As a result, using the 

shared concept CVE-ID, while offering high link precision, the recall which can be achieved might 

be quite low. 
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Figure 4-23: A partial ABox view of the initial HackerOne system ontology 

 

Figure 4-23 shows an example of a vulnerability that is found in both NVD and HackerOne 

for the NextCloud38 example. Figure 4-24 shows a diagram with a partial list of vulnerabilities 

found for NextCloud and the resources each vulnerability is captured. 

 

 

38 https://nextcloud.com/ 
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Figure 4-24: Nextcloud reports in NVD and HackerOne 

 

While NVD follows a standardized convention to specify applicable platforms using 

structured naming scheme provided by CPE, HackerOne and other bug bounty platforms do not 

necessarily adhere to this standardized name scheme for products and domains of 

products/environments for which vulnerabilities have been reported. Due to these non-

standardized descriptions used by bounty platforms, the content and level of detail provided in 

hacktivity reports can vary not only across bounty platforms, but also within the same bounty 

platform. Due to these inconsistencies, links established between these ontologies using the 

software product/environment or reporter name will be of low quality in terms of their recall and 

precision.  

Another issue related to data accuracy is the lack of versioning information in HackerOne. 

Each vulnerability is applicable on a list of the application versions until a patch is introduced and 

the vulnerability is resolved in one update. We attempted to mitigate this problem by using the 

report date of a vulnerability submission to evaluate the threat rather than the vulnerable versions. 

It should be noted that these links will be of lower quality. While recall might be acceptable for 

these links, their precision might be low. This is since we no longer distinguish the specific version 
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of a product in which a vulnerability might have been reported and only consider the product 

version closest to the hacktivity reporting date. The link quality could be further improved, by 

including additional resources in the linking process, such as references made to hacktivity reports 

in commit messages. Figure 4-25 shows a partial view of how different concepts are connected to 

each other, while each can function independently through their own ontologies. 

 

Figure 4-25: Nextcloud graph example 
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4.3.4 External Integrations – DBpedia 

The DBpedia Knowledge Graph encompasses curated data from Wikipedia and allows for 

the integration of Wikipedia data with other knowledge graphs using SPARQL. In our research, 

this integration can take on two forms. 1) We can use DBpedia data to further enrich resources in 

our ontologies, and 2) specify concepts through annotated text properties using DBpedia Spotlight 

[66]. DBpedia Spotlight allows for the automatic annotating mentions of DBpedia resources in 

text. This allows for linking unstructured information sources to the Linked Open Data cloud [67]. 

Figure 4-26 illustrates how we establish the link between DBpedia and CWE using the same-as 

relationship to describe each CWE property. 

 

Figure 4-26: Linking DBpedia to CWE. 
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4.3.5 Google Knowledge Graph 

The most widely used approach to identify and access knowledge resources found on the 

Internet are Search Engines. The Google Knowledge Graph is a knowledge base from which 

Google serves relevant information beside its search results. This information allows users to see 

answer in a glance. The data used by the Google Knowledge Graphs [68] is generated 

automatically from a variety of sources, covering people, businesses, places and more.  We tried 

to integrate the Google knowledge graph with our own knowledge graph, however, we soon 

realized that the Google Knowledge Graph is used internally by Google to enrich their search 

results. Access to the Google KG is limited to a REST API, which accepts a few parameters as 

query terms and returns the result as a list of ranked objects. While this traditional API is 

commonly used for Web-based applications, this API does not permit a full integration of the 

Google Knowledge Graph with our knowledge graph. More specifically, without exposing the 

internal model of their KG nor providing a SPARQL endpoint, no semantic links between the 

Google knowledge graph and our knowledge graphs can be established. As a result, we can not 

seamlessly semantic inference can be inducted across resource boundaries. We were therefore 

unable to directly integrate the Google knowledge graph with our knowledge graph.  

  



68 

 

5Use Cases 
In this chapter, we illustrate how our modeling approach can support different types of 

software analysis services (scenarios). More specifically, these analytic services are based on user-

defined queries that take advantage of both, our knowledge graph and SW inference services. For 

the first analysis service example (Section 5.2), we integrate knowledge from build management 

systems (e.g., Maven) with knowledge from vulnerability-related resources (e.g., HackerOne) to 

identify potentially vulnerable system components that might be affected by a vulnerability 

reported in a bounty program (HackerOne).  For the second use case (Section 5.3), we use our KG 

to analyze not only how many hacktivity reports a bounty hunter has submitted, but also the impact 

of these detected vulnerabilities on a software ecosystem. For the third use case (Section 5.4), we 

classify a bounty hunter’s expertise based on their hacktivity reports and use this information to 

identify a bounty hunter’s main expertise areas. For the last use case (Section 5.5), we show how 

our approach can be seamlessly integrated with other already existing knowledge graphs (e.g., 

DBpedia) to provide an enriched knowledge base. 

5.1 Case Studies Setup 

For our case studies' data collection and extraction, we rely on five real-world data sources: 

NVD, Dependencies, HackerOne, Snyk, and CWE. For our study, we limited the dataset to projects for 
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which we could identify the CVE-ID in both the bounty program reports and NVD. The extracted facts 

are then populated in their corresponding ontologies making them persistent in our triple store.  

Table 5-1 provides an overview of the dataset which we created and used to populate our 

knowledge graph. The table shows the TBox (concepts and properties) of our ontologies. It should be 

noted that the size of the serialized ABox in our triplestore is 203,390 explicit triples and 22,385,063 

inferred. 

Concept TBox size Description 
CVE/NVD 841 A subset of NVD records with HackerOne or Snyk 

reference  
Snyk 391 A subset of Snyk records that are referenced in NVD 
CWE 941 All records in CWE v4.4 
CPE 239 A subset of CPE records for used products only 
HackerOne 
Reports 

450 A subset of HackerOne records that are referenced in 
NVD 

HackerOne 
Hackers 

247 Number of Hackers for selected HackerOne Reports 

Libraries 5908 A subset of used libraries with their dependencies 

Table 5-1: Case studies environment. 

 

5.2 Dependency graph vulnerabilities 

As discussed earlier, while programmers are often unaware of components on which their 

system indirectly depends on, these indirect dependencies still need to be considered a part of a 

system’s attack surface and therefore closely monitored.  In this case study, we illustrate how our 

KG in combination with SW inference services can be used to identify vulnerable components 

(Error! Reference source not found.). The analysis is based on a SPARQL query that identifies s

ystem components that might be directly or indirectly affected by a vulnerability reported in 

HackerOne. More specifically, the analysis introduced in the case study considers both direct and 

indirect build dependencies extracted from the dependency management system and combines this 
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information with CVE and CPE vulnerabilities to identify components for which a vulnerability 

report in the bounty program (HackerOne) exists. 

 

Figure 5-1: Dependency graph vulnerability overview 

The project mikel/mail39 is a library for Ruby that is designed to handle email generation, 

parsing, and sending. This repository has 3500 stars with 228 contributors and is used by 1.9 

million repositories on GitHub only. The following example demonstrates recorded or inferred 

vulnerabilities of this system, which has a total of 5 direct and 3402 indirect dependencies to other 

components. It should be noted that while there are many indirect dependencies that are used in a 

project, this does not necessarily mean the project has inherited a vulnerability from these 

dependencies. Thus, this assertion can only be proved through a detailed analysis of the source 

code, which is out of the scope of this thesis. In Figure 5-2 we presented a partial view of the 

projects that our query scans for any potential vulnerabilities in mikel/mail (direct dependencies 

are shown in solid lines, indirect dependencies are in dashed lines). 

 

39 https://github.com/mikel/mail 
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Figure 5-2: Partial dependency graph for "mikel/mail " 

The query shown in Figure 5-3 retrieves all HackerOne reports for any component 

mikel/mail directly depends on.  The results (in Error! Reference source not found.) show that o

nly one direct dependent component has a HackerOne report with a known vulnerability associated 

with. 
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Figure 5-3: Direct bounty query for “mikel/mail” project 

 

Figure 5-4: Direct bounty result for “mikel/mail” project 

In what follows, we extend our previous analysis (Figure 5-3) to additionally include 

indirect dependencies in the analysis. The refined query, shown in Figure 5-5, considers transitive 

(indirect) dependencies by inferring the transitive properties captured within our KG. Including 

both direct and indirect dependencies shows that there are only 19 additional indirect dependent 

components (out of 3402) in the mikel/mail system that have vulnerabilities reported in 

HackerOne. It should be noted that the dependency analysis provided by this query does not 

consider the actual code usage of the component code. Therefore, our analysis may report that a 

system is exposed to a vulnerable component, even if the vulnerable part of the component is not 

used and therefore might not affect the system. A partial result of the transitive query for mikel/mail 

is provided in Figure 5-6. 
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Figure 5-5: Transitive bounty query for “mikel/mail” 

 

Figure 5-6: Partial result of the transitive query for “mikel/mail” 
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5.3 Impact of Bounty Hunters 

In this case study, we illustrate how using our KG and a SPARQL query, one can identify 

bounty hunters and the impact of the discovered vulnerabilities on global software ecosystem. 

More specifically, in this analysis, we not only analyze how many hacktivity reports a bounty 

hunter has submitted but also the potential impact of these detected vulnerabilities on the software 

ecosystem. This information can be used to identify and rank bounty hunters based on the potential 

impact of their work on global software community.  

 

Figure 5-7: Direct contribution measurement query for “Rafal Janicki” 

 

Figure 5-8: Direct contribution measurements result for “Rafal Janicki” 

 

Figure 5-77 and Figure 5-8 show the query and its results for bug bounty hunter “Rafal 

Janicki”, who has submitted a total of 6 bug bounty hacktivity reports. For this query, we only 

consider the components that are directly dependent on the vulnerability. The query shown in 

Figure 5-9 extends the analysis to include also components/projects that are directly or indirectly 
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dependent on the reported vulnerabilities. This extended analysis shows that a total of 1899 

libraries (refer to Error! Reference source not found.) are potentially affected by the v

ulnerabilities reported by this bounty hunter. The query highlights the ability of our modeling 

approach not only to integrate resources (by establishing links between the bug bounty program, 

NVD and Maven), but also to infer new knowledge. More specifically, the query takes advantage 

of the bi-directional links we established in our build management KG that allows us to infer a 

global dependency graph (using the transitive dependencies). Furthermore, our analysis can be 

easily extended to include additional bounty programs and/or build management systems.  

 

Figure 5-9: Indirect contribution measurements query for “Rafal Janicki” 

 

Figure 5-10: Indirect contribution measurements result for “Rafal Janicki” 
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5.4 Classification of Bounty Hunter’s Expertise  

In this use case, we construct a query that classifies a bounty hunter’s expertise for a certain 

type of vulnerabilities by combining the information from the CWE and the submitted hacktivity 

reports by a bounty hunter. The weaknesses are derived from the CWE repository by connecting 

the hacktivity reports to the CVE (NVD) and then to the CWE repository. This analysis could be 

further extended to include also Common Attack Pattern Enumeration and Classification 

(CAPEC), or other related vulnerability classification information. For instance, a bounty hunter 

might have discovered vulnerabilities of type weakness "Improper Limitation of a Pathname to a 

Restricted Directory ('Path Traversal')" more frequently than any other types of weaknesses. The 

result of such a classification/ranking can be used to identify bounty hunters with expertise in 

certain areas.  

 

Figure 5-11: Expertise assessment query for “Rafal Janicki” 
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Figure 5-12: Expertise assessment result for “Rafal Janicki” 

The query in Figure 5-11 retrieves all hacktivity reports published by Rafael Janicki on 

HackerOne and then classifies these based on their reported vulnerability types, using information 

from NVD and CWE. As the query results (Figure 5-122) show, the bounty hunter has mostly 

worked on vulnerabilities of CWE types “22” (“Improper Limitation of a Pathname to a Restricted 

Directory ('Path Traversal')”) and “79” (Improper Neutralization of Input During Web Page 

Generation (‘Cross-site Scripting’)) of a Pathname to a Restricted Directory ('Path Traversal'). 

5.5 Integration With External KGs 

The following use case presents, how approach can be further enriched with knowledge 

from external (third-party) knowledge graphs. The query in Figure 5-13 shows how one can create 

a profile for a software product, in this example for Nextcloud. The query, firstly retrieves general 

information (e.g., name, developer, logo, OS, product description) from DBpedia and secondly, 

combines this with general information with knowledge extracted in our KG ( hacktivity reports 

and NVD information). 
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Figure 5-13: DBpedia integration query 

 

The resulting profile includes a total of 111 facts, where 11 facts are extracted from the 

external DBpedia KG (Figure 5-14)   and the remaining facts are extracted from our KG (Figure 

5-15).  
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Figure 5-14: A partial view DBpedia integration result - part 1 

 

Figure 5-15: A partial view DBpedia integration result - part 2 
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6Related Work and Discussion 
In this chapter, we discuss relevant to our work and how our contributions related to the 

existing research. 

6.1 Modeling known vulnerabilities with Ontologies 

In what follows, we discuss the use of ontologies as a modeling language in the 

cybersecurity domain. Cybersecurity is concerned with technologies, processes, and practices 

designed to protect networks, computers, programs, and data from attacks, damages, or 

unauthorized access [68]. More specifically, we focus on work related to the modeling known 

vulnerabilities using ontologies. Undercoffer et al. [69] and [70] introduced an ontology for 

intrusion detection systems. The proposed ontology was created based on the evaluation of 4000 

vulnerabilities and the attack strategies used to exploit them. Their ontology was specified using 

the DARPA Agent Markup Language (DAML) and prototyped using DAMLJessKB [71]. The 

authors included several use case scenarios based on common attacks such as Denial of Service – 

Sync Flood, the Classic Mitnick Type Attack, and Buffer Overflow Attack. 

In More et al. [72], a situation-aware intrusion detection model was presented that 

integrates system security data sources (e.g., network logs) to create a semantically rich knowledge 

base for the detection of cyber threats/vulnerabilities. The authors collected data streams from the 

network monitors, host monitors, sensor data, and other Intrusion Detection Systems (IDS) 
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modules, which are asserted as facts in their knowledge base (introduced by [69] and [70]). For 

intrusion detection, the authors take the advantage of SW reasoning services to infer whether there 

is an indication of an attack. 

Joshi et al. [73] extracted cybersecurity-related entities, concepts, and relations in their 

work, and captured them in their IDS ontology (introduced by [69] and [70], and further enhanced 

by [72]). As a part of their approach, the authors also mapped these concepts to the objects in the 

DBpedia knowledge base using DBpedia Spotlight [67]. The approach creates an RDF-linked data 

representation of cybersecurity concepts and vulnerability descriptions. The security information 

is extracted from both structured vulnerability databases and unstructured text. Their approach 

supports vulnerability identification and vulnerability mitigation efforts. 

Sartabanova et al. [74] proposed an ontology for CWE and software architecture. The 

authors used Protégé to model the weakness structure and design their ontology. In an effort by 

Iannacone et al. [75], the existing cybersecurity ontologies from [69], [70], and [76] were extended 

to introduce an ontology framework that incorporates additional information from a variety of 

structured and unstructured data sources. In the study of Kamongi et al. [77], the authors introduced 

VULCAN, a vulnerability assessment framework for cloud computing systems. The framework 

consists of two main components: an Ontological Vulnerability Assessment introduced by [78] 

and an Ontology Vulnerability Database [79] component. These two components provide access 

to known vulnerability information that has been published by NVD. For the vulnerability 

assessment, their approach benefits from advanced reasoning capabilities to support a semantic 

search for vulnerabilities.  

Like most of the related research on modeling vulnerabilities with ontologies, our research 

describes vulnerability information. We reuse existing ontologies [10] and extend these already 

available ontologies with new vulnerability information (concepts), as well as introduce new 

ontologies that capture knowledge specific to the bug bounty domain. None of the existing research 

has included the domain of bounty programs in its models. 
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6.2 Knowledge Integration 

Very little research work exists that discusses the integration of vulnerability-related 

knowledge with other software artifacts using ontologies. The closest work related to ours is the 

work by Alqahtani et al. [65] who introduced SEVONT, a unified ontology for modeling software 

vulnerabilities. SEVONT introduces a multi-layer knowledge model which not only provides a 

unified knowledge representation, but also captures software vulnerability information at different 

abstract levels to allow seamless integration, analysis, and reuse of the modeled knowledge. 

Furthermore, Eghan et al. [80] developed a new ontology to link bi-directional dependencies in 

Maven using OWL reasoning service which was also integrated with [52]. Syed et al. [76], 

introduced Unified Cybersecurity Ontology (UCO) to support information integration and cyber 

situational awareness. The ontology integrates data and knowledge schema from both 

cybersecurity systems and commonly used cybersecurity standards to allow for data exchange 

among these resources. The UCO ontology has also been mapped to a number of other existing 

cybersecurity ontologies ([69] and [70]) and resources on the Linked Open Data cloud ([72] and 

[73]). As part of their work, the authors presented a unified representation model for several 

vulnerability databases to facilitate data retrievals from different data sources.  

Our ontology is based on SEVONT, however, we contributed by extending the framework 

and including ontologies related to the bug bounty domain. The resulting unified representation of 

software artifacts related to known software vulnerabilities provides the foundation for novel 

software analytics services which include the use of information captured in bounty programs.  
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6.3 Ontology-based Analytics tools that support Vulnerability 

Analysis 

In the research domain of ontology-based analytics tools, Gyrard et al. [81] and [82] 

contributed by introducing an ontology-based Security Toolbox for Attack and Countermeasure 

(STAC). STAC guides software developers in selecting the appropriate security mechanisms to 

secure Internet of Things (IoT) applications (more specifically, securing ETSI Machine to Machine 

[M2M] architecture). Moreover, Durai et al. [83] proposed an ontology (SQLIO)  that can be used 

to prevent and detect SQL Injection Attacks (SQLIA). The objective of the methodology is to 

prevent and detect SQLIA web vulnerabilities in cloud environments. Zhang et al. [84] conducted 

an empirical study about applying data-mining techniques on NVD data with the objective of 

predicting the time for the occurrence of a new vulnerability in a given software application. They 

experimented with different features extracted from the information available in NVD and applied 

various machine-learning algorithms to examine the predictive power of the data and features. 

Their results show that the data in NVD generally have mostly poor prediction capability, except 

for a few vendors and software applications. 

Like other existing research, we do provide software analytics support to manage known 

software vulnerabilities. However, our approach differs from existing approaches, by taking 

advantage of SW inference services to include knowledge from the bug bounty domain. This 

additional knowledge can provide developers with new insights on the impact and management of 

vulnerabilities. We furthermore illustrate how more generic knowledge resources such as DBpedia 

can be included to further enrich our vulnerability analysis results. 
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7Conclusions and Future Work 
In this thesis, we introduce a knowledge graph that takes advantage of the SW and its 

technology stack to leverage and integrate knowledge resources related to known software 

vulnerabilities. More specifically, we utilized knowledge graphs to provide a unified 

representation that allows us to transform heterogeneous information silos (e.g., VDBs, bug bounty 

programs, build systems, and source code repositories) into information hubs. We introduced a 

methodology to depict the major steps involved in identifying, modeling, and integrating 

knowledge resources to form such a knowledge graph. We then illustrated how our methodology 

can be applied to create a knowledge graph for resources related to known software vulnerabilities. 

For our knowledge modeling approach, we reuse existing ontologies (e.g., SEVONT, SBSON) 

and enrich the knowledge graph with new resources (e.g., bounty programs, DBpedia). This 

enriched knowledge graph serves an information hub that enables us to infer knowledge not only 

within but also across knowledge resource boundaries. We introduce novel software security 

analytics services that take advantage of our unified knowledge representation.  

At last, we illustrate the applicability of our approach through several case studies, which 

include real-world data sources such as: NVD-CVE, Maven, HackerOne, Snyk, and CWE.  
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There are also several possible directions for future work: 

Tool development. One potential avenue for future work is the integration of our knowledge graph 

within an IDE. More specifically, one could envision taking advantage of a programmer’s current 

task context in the IDE (e.g., current source code being edited) to provide context-specific analytics 

services.  

Improve ontology linking. While we rely on the exact concept and property matching (e.g., CVE-

IDs) techniques to link ontologies, this limits the number of instances that we can link. Moreover, 

lack of investigating the actual usage of vulnerable code increased the number of project 

dependencies exponentially. Additional semantic linking techniques could be applied to improve 

recall while linking our ontologies. 

Integrating additional resources 

Another future direction would be to integrate other software-related knowledge resources, such 

as StackOverflow40, to further enrich our knowledge graph. 

  

 

40 https://stackoverflow.com/ 



86 

 

8References 
[1] K. R. van Wyk and G. McGraw, "Bridging the gap between software development and 

information security," IEEE Security & Privacy, vol. 3, no. 5, pp. 75-79, 2005. 

[2] A. L. Mesquida and A. Mas, "Implementing information security best practices on 
software lifecycle processes: The ISO/IEC 15504 Security Extension," Computers & 
Security, vol. 48, pp. 19-34, 2015. 

[3] T. Walshe and A. Simpson, "An Empirical Study of Bug Bounty Programs," in IBF 2020 - 
Proceedings of the 2020 IEEE 2nd International Workshop on Intelligent Bug Fixing, 2020, 
doi: 10.1109/IBF50092.2020.9034828.  

[4] H. Booth, D. Rike, and G. A. Witte, "The national vulnerability database (nvd): Overview," 
in ITL BULLETIN FOR DECEMBER 2013, ed, 2013. 

[5] DeveloperSteve, "Using the Snyk Vulnerability Database to find projects for The Big Fix,"  
vol. July, 2022, ed. Snyk.io: Snyk.io, 2022. 

[6] C. Theisen, N. Munaiah, M. Al-Zyoud, J. C. Carver, A. Meneely, and L. Williams, "Attack 
surface definitions: A systematic literature review," Information and Software 
Technology, vol. 104, pp. 94-103, 2018. 

[7] S. S. Alqahtani, E. E. Eghan, and J. Rilling, "Tracing known security vulnerabilities in 
software repositories–A Semantic Web enabled modeling approach," Science of 
Computer Programming, vol. 121, pp. 153-175, 2016. 

[8] V. Lenarduzzi, A. Sillitti, and D. Taibi, "A survey on code analysis tools for software 
maintenance prediction," in International Conference in Software Engineering for Defence 
Applications, 2018: Springer, pp. 165-175.  

[9] K. Goseva-Popstojanova and A. Perhinschi, "On the capability of static code analysis to 
detect security vulnerabilities," Information and Software Technology, vol. 68, pp. 18-33, 
2015. 

[10] S. S. Alqahtani, E. E. Eghan, and J. Rilling, "SV-AF—a security vulnerability analysis 
framework," in 2016 IEEE 27th International Symposium on Software Reliability 
Engineering (ISSRE), 2016: IEEE, pp. 219-229.  



87 

 

[11] E. E. Eghan and J. Rilling, "A Semantic Web-Enabled Approach for Dependency 
Management," International Journal of Software Engineering and Knowledge 
Engineering, vol. 32, no. 09, pp. 1307-1343, 2022. 

[12] J. R. David Uberti, Catherine Stupp. "The Log4j Vulnerability: Millions of Attempts Made 
Per Hour to Exploit Software Flaw." Wall street journal. 
https://www.wsj.com/articles/what-is-the-log4j-vulnerability-11639446180 (accessed 
May, 2022. 

[13] P. Paganini. "Quebec shuts down thousands of sites as disclosure of the Log4Shell flaw." 
https://securityaffairs.co/wordpress/125556/hacking/quebec-shut-down-sites-
log4shell.html (accessed May, 2022. 

[14] C. Sharma, "Tragedy of the Digital Commons," North Carolina Law Review, Forthcoming, 
p. 82, August , 2022. 

[15] L. Tal. "The Log4j vulnerability and its impact on software supply chain security." Snyk. 
https://snyk.io/blog/log4j-vulnerability-software-supply-chain-security-log4shell/ 
(accessed June, 2022. 

[16] T. Berners-Lee, J. Hendler, and O. Lassila, "The semantic web," Scientific american, vol. 
284, no. 5, pp. 34-43, 2001. 

[17] T. R. Gruber, "A translation approach to portable ontology specifications," Knowledge 
acquisition, vol. 5, no. 2, pp. 199-220, 1993. 

[18] S. Staab and R. Studer, Handbook on ontologies. Springer Science & Business Media, 2010. 

[19] R. Laurini, "Pre-consensus ontologies and urban databases," in Ontologies for Urban 
Development: Springer, 2007, pp. 27-36. 

[20] "OWL 2 Web Ontology Language Document Overview (Second Edition)." W3C. 
https://www.w3.org/TR/owl2-overview/ (accessed March, 2022. 

[21] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and D. Nardi, The description 
logic handbook: Theory, implementation and applications. Cambridge university press, 
2003. 

[22] V. Gezer and S. Bergweiler, "Service and Workflow Engineering based on Semantic Web 
Technologies," The Tenth International Conference on Mobile Ubiquitous Computing, 
Systems, Services and Technologies. International Conference on Mobile Ubiquitous 
Computing, Systems, Services and Technologies (UBICOMM-16), located at Tenth 
International Conference on M, no. October, 2016. 

https://www.wsj.com/articles/what-is-the-log4j-vulnerability-11639446180
https://securityaffairs.co/wordpress/125556/hacking/quebec-shut-down-sites-log4shell.html
https://securityaffairs.co/wordpress/125556/hacking/quebec-shut-down-sites-log4shell.html
https://snyk.io/blog/log4j-vulnerability-software-supply-chain-security-log4shell/
https://www.w3.org/TR/owl2-overview/


88 

 

[23] "SPARQL Query Language for RDF." W3C. https://www.w3.org/2001/sw/wiki/SPARQL 
(accessed March, 2022. 

[24] V. G. Castellana et al., "Scaling RDF Triple Stores in Size and Performance. Modeling 
SPARQL Queries as Graph Homomorphism Routines," in Handbook of Statistics, vol. 33, 
2015. 

[25] A. Blumauer, The Knowledge Graph Cookbook. Recipes that Work (Twist). 2020. 

[26] X. Chen, S. Jia, and Y. Xiang, "A review: Knowledge reasoning over knowledge graph," 
Expert Systems with Applications, vol. 141, p. 112948, 2020/03/01/ 2020, doi: 
https://doi.org/10.1016/j.eswa.2019.112948. 

[27] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, "A survey on knowledge graphs: 
Representation, acquisition, and applications," IEEE Transactions on Neural Networks and 
Learning Systems, vol. 33, no. 2, pp. 494-514, 2021. 

[28] Q. Wang, Z. Mao, B. Wang, and L. Guo, "Knowledge graph embedding: A survey of 
approaches and applications," IEEE Transactions on Knowledge and Data Engineering, vol. 
29, no. 12, pp. 2724-2743, 2017. 

[29] T. Berners-Lee. "Linked Data - Design Issues." W3C. 
https://www.w3.org/DesignIssues/LinkedData (accessed May, 2022. 

[30] C. Bizer, T. Heath, and T. Berners-Lee, "Linked Data: The Story so Far," in Semantic 
Services, Interoperability and Web Applications: Emerging Concepts, A. Sheth Ed. Hershey, 
PA, USA: IGI Global, 2011, pp. 205-227. 

[31] L. Ehrlinger and W. Wöß, "Towards a definition of knowledge graphs," in CEUR Workshop 
Proceedings, 2016, vol. 1695.  

[32] "Announcement: DBpedia Snapshot 2021-06 Release," in DBpedia Blog vol. 2022, ed: 
dbpedia, 2021. 

[33] A. Singhal. "Introducing the Knowledge Graph: things, not strings." Google. 
https://blog.google/products/search/introducing-knowledge-graph-things-not/ 
(accessed March, 2022. 

[34] J. Holze. "DBpedia Global: Data Beyond Wikipedia." dbpedia.org. 
https://www.dbpedia.org/blog/dbpedia-global/ (accessed July, 2022. 

https://www.w3.org/2001/sw/wiki/SPARQL
https://doi.org/10.1016/j.eswa.2019.112948
https://www.w3.org/DesignIssues/LinkedData
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.dbpedia.org/blog/dbpedia-global/


89 

 

[35] M. Sharma and P. Soni, "Quantitative Analysis and Implementation of Relational and 
Graph Database Technologies," International Journal of Modern Computer Science and 
Applications (IJMCSA) ISSN, pp. 2321-2632, 2014. 

[36] T. Nafees, N. Coull, I. Ferguson, and A. Sampson, "Vulnerability anti-patterns: a timeless 
way to capture poor software practices (vulnerabilities)," in 24th Conference on Pattern 
Languages of Programs, 2018: The Hillside Group, p. 23.  

[37] W. N. Robinson, S. D. Pawlowski, and V. Volkov, "Requirements interaction 
management," ACM Comput. Surv., vol. 35, no. 2, pp. 132–190, 2003, doi: 
10.1145/857076.857079. 

[38] M. Isaac and S. Frenkel. "Facebook Security Breach Exposes Accounts of 50 Million Users." 
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html 
(accessed June, 2022. 

[39] W. Wang, F. Dumont, N. Niu, and G. Horton, "Detecting Software Security Vulnerabilities 
Via Requirements Dependency Analysis," IEEE Transactions on Software Engineering, vol. 
48, no. 5, pp. 1665-1675, 2022, doi: 10.1109/TSE.2020.3030745. 

[40] A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mohaisen, "Cleaning the NVD: 
Comprehensive quality assessment, improvements, and analyses," IEEE Transactions on 
Dependable and Secure Computing, 2021. 

[41] H. Fryer and E. Simperl, "Web science challenges in researching bug bounties," in WebSci 
2017 - Proceedings of the 2017 ACM Web Science Conference, 2017, doi: 
10.1145/3091478.3091517.  

[42] "Hackers Earn Record-Breaking $100 Million on HackerOne." HackerOne. 
https://www.hackerone.com/press-release/hackers-earn-record-breaking-100-million-
hackerone-0 (accessed June, 2022. 

[43] K. Sridhar and M. Ng, "Hacking for good: Leveraging HackerOne data to develop an 
economic model of Bug Bounties," Journal of Cybersecurity, vol. 7, no. 1, p. tyab007, 2021. 

[44] "Gartner’s Top 25 Enterprise Software Startups To Watch In 2020." Forbes. 
https://www.forbes.com/sites/louiscolumbus/2020/07/05/gartners-top-25-enterprise-
software-startups-to-watch-in-2020/?sh=5bab476d7822#486868977822 (accessed June, 
2022. 

[45] M. Linares-Vásquez, C. McMillan, D. Poshyvanyk, and M. Grechanik, "On using machine 
learning to automatically classify software applications into domain categories," Empirical 
Software Engineering, vol. 19, no. 3, pp. 582-618, 2014. 

https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.hackerone.com/press-release/hackers-earn-record-breaking-100-million-hackerone-0
https://www.hackerone.com/press-release/hackers-earn-record-breaking-100-million-hackerone-0
https://www.forbes.com/sites/louiscolumbus/2020/07/05/gartners-top-25-enterprise-software-startups-to-watch-in-2020/?sh=5bab476d7822#486868977822
https://www.forbes.com/sites/louiscolumbus/2020/07/05/gartners-top-25-enterprise-software-startups-to-watch-in-2020/?sh=5bab476d7822#486868977822


90 

 

[46] O. Meqdadi, N. Alhindawi, J. Alsakran, A. Saifan, and H. Migdadi, "Mining software 
repositories for adaptive change commits using machine learning techniques," 
Information and Software Technology, vol. 109, pp. 80-91, 2019. 

[47] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, "On integrating orthogonal 
information retrieval methods to improve traceability recovery," in 2011 27th IEEE 
International Conference on Software Maintenance (ICSM), 2011: IEEE, pp. 133-142.  

[48] N. Nazar, Y. Hu, and H. Jiang, "Summarizing software artifacts: A literature review," 
Journal of Computer Science and Technology, vol. 31, no. 5, pp. 883-909, 2016. 

[49] S. Gupta and S. Gupta, "Summarization of software artifacts: a review," International 
Journal of Computer Science & Information Technology (IJCSIT) Vol, vol. 9, 2017. 

[50] J. Zhang, R. Xie, W. Ye, Y. Zhang, and S. Zhang, "Exploiting code knowledge graph for bug 
localization via bi-directional attention," in Proceedings of the 28th International 
Conference on Program Comprehension, 2020, pp. 219-229.  

[51] R. Xie et al., "Deeplink: A code knowledge graph based deep learning approach for issue-
commit link recovery," in 2019 IEEE 26th International Conference on Software Analysis, 
Evolution and Reengineering (SANER), 2019: IEEE, pp. 434-444.  

[52] M. A. Musen, "The protégé project: a look back and a look forward," AI matters, vol. 1, 
no. 4, pp. 4-12, 2015. 

[53] R. V. Guha, D. Brickley, and S. Macbeth, "Schema. org: evolution of structured data on the 
web," Communications of the ACM, vol. 59, no. 2, pp. 44-51, 2016. 

[54] N. F. Noy and D. L. McGuinness, "Ontology development 101: A guide to creating your 
first ontology," ed: Stanford knowledge systems laboratory technical report KSL-01-05 
and …, 2001. 

[55] P. E. Van Der Vet and N. J. Mars, "Bottom-up construction of ontologies," IEEE 
Transactions on Knowledge and data Engineering, vol. 10, no. 4, pp. 513-526, 1998. 

[56] V. Alves et al., "An exploratory study of information retrieval techniques in domain 
analysis," in 2008 12th International Software Product Line Conference, 2008: IEEE, pp. 
67-76.  

[57] H. Kagdi, M. L. Collard, and J. I. Maletic, "A survey and taxonomy of approaches for mining 
software repositories in the context of software evolution," Journal of software 
maintenance and evolution: Research and practice, vol. 19, no. 2, pp. 77-131, 2007. 



91 

 

[58] K. K. Chaturvedi, V. Sing, and P. Singh, "Tools in mining software repositories," in 2013 
13th International Conference on Computational Science and Its Applications, 2013: IEEE, 
pp. 89-98.  

[59] T. Siddiqui and A. Ahmad, "Data mining tools and techniques for mining software 
repositories: A systematic review," Big Data Analytics, pp. 717-726, 2018. 

[60] J. Hejderup, A. van Deursen, and G. Gousios, "Software ecosystem call graph for 
dependency management," in 2018 IEEE/ACM 40th International Conference on Software 
Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER), 2018: IEEE, pp. 
101-104.  

[61] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, "Structure and evolution of package 
dependency networks," in 2017 IEEE/ACM 14th International Conference on Mining 
Software Repositories (MSR), 2017: IEEE, pp. 102-112.  

[62] "Mitre taps corporate partners to start up foundation focused on cyber defense," in 
Washington Business Journal vol. 2022, ed. https://www.bizjournals.com: Business 
Journal, 2019. 

[63] E. E. Eghan, S. S. Alqahtani, C. Forbes, and J. Rilling, "API trustworthiness: an ontological 
approach for software library adoption," Software Quality Journal, vol. 27, no. 3, pp. 969-
1014, 2019. 

[64] M. Würsch, G. Ghezzi, M. Hert, G. Reif, and H. C. Gall, "SEON: A pyramid of ontologies for 
software evolution and its applications," Computing, vol. 94, no. 11, 2012, doi: 
10.1007/s00607-012-0204-1. 

[65] S. Alqahtani, "Enhancing Trust –A Unified Meta-Model for Software Security Vulnerability 
Analysis," ed. Montreal, 2018, pp. undefined-228. 

[66] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, "Improving efficiency and accuracy in 
multilingual entity extraction," in Proceedings of the 9th international conference on 
semantic systems, 2013, pp. 121-124.  

[67] P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer, "DBpedia spotlight: shedding light 
on the web of documents," presented at the Proceedings of the 7th International 
Conference on Semantic Systems, Graz, Austria, 2011. [Online]. Available: 
https://doi.org/10.1145/2063518.2063519. 

[68] P. W. Singer and A. Friedman, Cybersecurity: What everyone needs to know. oup usa, 
2014. 

https://www.bizjournals.com/
https://doi.org/10.1145/2063518.2063519


92 

 

[69] J. Undercofer, A. Joshi, T. Finin, and J. Pinkston, "A target-centric ontology for intrusion 
detection," in Workshop on Ontologies in Distributed Systems, held at The 18th 
International Joint Conference on Artificial Intelligence, 2003.  

[70] J. Undercoffer, A. Joshi, and J. Pinkston, "Modeling computer attacks: An ontology for 
intrusion detection," in International Workshop on Recent Advances in Intrusion 
Detection, 2003: Springer, pp. 113-135.  

[71] J. B. Kopena and W. C. Regli, "DAMLJessKB: A tool for reasoning with the Semantic Web," 
in International Semantic Web Conference, 2003: Springer, pp. 628-643.  

[72] S. More, M. Matthews, A. Joshi, and T. Finin, "A knowledge-based approach to intrusion 
detection modeling," in 2012 IEEE Symposium on Security and Privacy Workshops, 2012: 
IEEE, pp. 75-81.  

[73] A. Joshi, R. Lal, T. Finin, and A. Joshi, "Extracting cybersecurity related linked data from 
text," in 2013 IEEE Seventh International Conference on Semantic Computing, 2013: IEEE, 
pp. 252-259.  

[74] Z. Sartabanova, S. Sarsimbaeva, G. Urdabayeva, and V. Dimitrov, "Building an Ontology 
for CWE from the Point of View of Architectural Concept," in CEUR Workshop Proceedings, 
2021, pp. 352-358.  

[75] M. Iannacone et al., "Developing an ontology for cyber security knowledge graphs," in 
Proceedings of the 10th Annual Cyber and Information Security Research Conference, 
2015, pp. 1-4.  

[76] Z. Syed, A. Padia, T. Finin, L. Mathews, and A. Joshi, "UCO: A unified cybersecurity 
ontology," in Workshops at the thirtieth AAAI conference on artificial intelligence, 2016.  

[77] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal, "Vulcan: 
Vulnerability assessment framework for cloud computing," in 2013 IEEE 7th International 
Conference on Software Security and Reliability, 2013: IEEE, pp. 218-226.  

[78] A. Steele, "Ontological vulnerability assessment," in International Conference on Web 
Information Systems Engineering, 2008: Springer, pp. 24-35.  

[79] S. Kotikela, K. Kavi, and M. Gomathisankaran, "Vulnerability assessment in cloud 
computing," in Proceedings of the International Conference on Security and Management 
(SAM), 2012: The Steering Committee of The World Congress in Computer Science, 
Computer …, p. 1.  



93 

 

[80] E. E. Eghan, "Dependency Management 2.0–A Semantic Web Enabled Approach," 
Concordia University, 2019.  

[81] A. Gyrard, C. Bonnet, and K. Boudaoud, "An ontology-based approach for helping to 
secure the etsi machine-to-machine architecture," in 2014 IEEE International Conference 
on Internet of Things (iThings), and IEEE Green Computing and Communications 
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), 2014: IEEE, pp. 109-
116.  

[82] A. Gyrard, C. Bonnet, and K. Boudaoud, "The stac (security toolbox: attacks & 
countermeasures) ontology," in Proceedings of the 22nd International Conference on 
World Wide Web, 2013, pp. 165-166.  

[83] K. N. Durai, R. Subha, and A. Haldorai, "A Novel Method to Detect and Prevent SQLIA Using 
Ontology to Cloud Web Security," Wireless Personal Communications, vol. 117, no. 4, pp. 
2995-3014, 2021. 

[84] S. Zhang, X. Ou, and D. Caragea, "Predicting cyber risks through national vulnerability 
database," Information Security Journal: A Global Perspective, vol. 24, no. 4-6, pp. 194-
206, 2015. 

 



94 

 

Appendix A: NVD Properties 

Vulnerability Specification: 
Property Description 
id Unique identifier for every reported vulnerability 
assigner The assigner organization 
problemtype List of problems based on CWE 
references Report reference (e.g. HackerOne) 
description Description of vulnerability 
configuration Product configuration (e.g. versioning) which the vulnerability applies 
impact Impact score based on different metrics (e.g. CVVS3) 
publishDate Initial publish date 
lastModifiedDate Date of last modification 

Table 0-1: Vulnerability Specification 

CWE Specification: 
Property Description 
id Unique identifier for weakness 
name Title of weakness 
description Full description of weakness 
related Relationships between different weaknesses (e.g., ChildOf) 
applicablePlatforms Vulnerable platforms to this weakness 
modesOfIntroduction Level of vulnerability 
commonConsequences Common consequences of exploit 
likelihoodOfExploit How likelihood is to be exposed 
potentialMitigation Mitigation steps to prevent exploit 

Table 0-2: CWE Specification 

CPE Specification: 
Property Description 
deprecated Is product deprecated? 
cpeUri Unique identifier of exact product and release information 
lastModifiedDate Date of last modification 
titles Product title in multiple languages 
refs Product reference links 
vulnerabilities Known vulnerabilities for the product 

Table 0-3: CPE Specification 
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Appendix B: HackerOne Properties 

Bounty Program Specification: 
Property Description 
url Program page info on HackerOne website 
name Project/Company name 
about A short description of project/company 
stripped_policy Company policy 
disclosure_url Where users can report their activity 
offers_reward If the program offers any reward 
offers_thanks If the program offers any thanks 

Table 0-1: Bug Bounty Specification 

Bounty Report Specification: 
Property Description 
reporter The hacker who reported 
state Report current state 
disclosion_date The date of disclosion the vulnerability 
weakness Exposed weaknesses 
cve The issued cve as result of the activity 
severity Severity score 
bounty Amount of bounty paid to the hacker 

Table 0-2: Bounty Report Specification 

Bounty Hunter Specification: 

Property Description 
name User provided full name 
hackerOneId User id in HackerOne 
joinedAt Date of HackerOne sign up 
username HackerOne username 
workplaceHomePage User description page 

Table 0-3: Bounty Hunter Specification 
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Appendix C: Libraries.io Properties 
Library Specification: 

Property Description 
name Project name 
dependentReposCount Number of dependent repositories 
deprecationReason Is it deprecated or not and why 
description A project description 
forks Number of forks of the repo 
homepage Project homepage URL 
keywords Project keywords 
language The main programming language 
latestDownloadUrl Latest URL of built project 
latestReleaseNumber Latest release version number 
latestReleasePublishedAt Latest release date 
latestStableReleaseNumber Latest stable release version number 
latestStableReleasePublishedAt Latest stable release date 
license Project license 
packageManagerUrl Package manager URL 
stars Number of repository stars 
dependencies List of project dependencies 

Table 0-1: Library Specification 
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