
A Knowledge Graph to Represent Software Vulnerabilities

Milad Taghavi

A Thesis

In the Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Software Engineering)

at Concordia University

Montreal, Quebec, Canada

February 2023

© Milad Taghavi, 2023

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Milad Taghavi

Entitled: A Knowledge Graph to Represent Software Vulnerabilities

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final Examining Committee:

___Chair
Dr. Joey Paquet

___Examiner
Dr. Dhrubajyoti Goswami

___Examiner
Dr. Joey Paquet

___Supervisor
Dr. Juergen Rilling

___Supervisor
Dr. Jamal Bentahar

Approved by
__
Dr.

__
Dr.

Faculty of Engineering and Computer Science

iii

Abstract

A Knowledge Graph to Represent Software Vulnerabilities

Milad Taghavi

Over the past decade, there has been a major shift towards the globalization of the software

industry, by allowing code to be shared and reused across project boundaries. This global code

reuse can take on various forms, include components or libraries which are publicly available on

the Internet. However, this code reuse also comes with new challenges, since not only code but

also vulnerabilities these components might be exposed to are shared. The software engineering

community has attempted to address this challenge by introducing bug bounty platforms and

software vulnerability repositories, to help organizations manage known vulnerabilities in their

systems. However, with the ever-increasing number of vulnerabilities and information related to

these vulnerabilities, it has become inherently more difficult to synthesize this knowledge.

Knowledge Graphs and their supporting technology stack have been promoted as one possible

solution to model, integrate, and support interoperability among heterogeneous data sources.

In this thesis, we introduce a methodology that takes advantage of knowledge graphs to

integrate resources related to known software vulnerabilities. More specifically, this thesis takes

advantage of knowledge graphs to introduce a unified representation that transforms traditional

information silos (e.g., VDBs, bug bounty programs) and transforms them in information hubs.

Several use cases are presented to illustrate the applicability and flexibility of our modeling

approach, demonstrating that the presented knowledge modeling approach can indeed unify

heterogeneous vulnerability data sources and enable new types of vulnerability analysis.

iv

Acknowledgements

First and foremost, I am extremely grateful to my supervisor, Dr. Juergen Rilling for his

time, effort, and continuous support during my Master study. I have been extremely lucky to have

a supervisor who cared so much about my work, and who responded to my questions and queries

so promptly. I would also like to thank Dr. Jamal Bentahar who trusted me in the first place and

guided me to a correct path. I must express my gratitude to my sister and brother-in-low, whom

without my accomplishment would have not been possible and I was blessed with their support

throughout the years.

v

Table of Contents

List of Figures .. viii

List of Tables ... xi

List of Acronyms ... xii

1 Introduction ... 1

1.1 Motivation...2

1.1.1 Research Objectives ... 2

1.2 Motivating Example ...4

1.3 Contributions ...7

2 Background ... 8

2.1 The Semantic Web ...8

2.2 The Semantic Web and its Technology Stack ...9

2.2.1 Description Logic.. 10

2.2.2 The Resource Description Framework (RDF) ... 12

2.2.3 SPARQL... 13

2.3 Knowledge Graphs ... 14

2.3.1 Knowledge Graph vs Linked Data .. 15

2.3.2 Examples of Big Knowledge Graphs .. 16

2.3.3 Graph Databases versus Relational Databases ... 18

vi

2.4 Vulnerability Databases and Repositories ... 18

2.5 Bug Bounty Programs ... 22

2.5.1 Bug Bounty platforms .. 23

3 A Methodology to Establish a Knowledge Graph for Software Artifacts 25

3.1 Selection and acquisition of knowledge resources (Step #1) 27

3.2 Schema Extraction and Ontology Design (Step #2) .. 29

3.3 Data Extraction (Step #3).. 30

3.4 Data Pre-processing (Step #4) ... 31

3.5 Knowledge graph population (Step #5) ... 32

3.6 Software Analytics Queries (Step #6) .. 33

3.7 Knowledge Graph evolution ... 34

4 A Knowledge Graph for Software Vulnerability-Related Resources 35

4.1 Selection of Software Vulnerability-Related Resources ... 36

4.2 Establishing Initial System-Level Ontologies .. 38

4.2.1 Vulnerability-Related Ontologies... 38

4.2.2 Build Dependency Ontology .. 49

4.3 Ontology Abstraction and Refinement .. 52

4.3.1 Abstraction Overview .. 52

4.3.2 Design Details .. 54

vii

4.3.3 Extensions to the SEVONT Hierarchy... 56

4.3.4 External Integrations – DBpedia .. 66

4.3.5 Google Knowledge Graph .. 67

5 Use Cases... 68

5.1 Case Studies Setup ... 68

5.2 Dependency graph vulnerabilities .. 69

5.3 Impact of Bounty Hunters .. 74

5.4 Classification of Bounty Hunter’s Expertise ... 76

5.5 Integration With External KGs .. 77

6 Related Work and Discussion ... 80

6.1 Modeling known vulnerabilities with Ontologies .. 80

6.2 Knowledge Integration ... 82

6.3 Ontology-based Analytics tools that support Vulnerability Analysis 83

7 Conclusions and Future Work ... 84

8 References ... 86

Appendix A: NVD Properties ... 94

Appendix B: HackerOne Properties .. 95

Appendix C: Libraries.io Properties .. 96

viii

List of Figures

Figure 1-1: Vulnerabilities from direct vs indirect dependencies [15] 6

Figure 2-1: Semantic Web technology stack. [22].. 10

Figure 2-2: Description Logic System .. 11

Figure 2-3: DBpedia concepts map [34] ... 17

Figure 3-1: KG development process ... 26

Figure 3-2: Schematic KG view ... 27

Figure 4-1: Overview picture of the actual process applied to vulnerabilities 35

Figure 4-2: CWE XML Schema (partial view)... 39

Figure 4-3: CWE - System Level Ontology ... 40

Figure 4-4: A partial ABox view of the initial CWE system ontology 41

Figure 4-5: A sample CPE record ... 41

Figure 4-6: Initial CPE System Level Ontology ... 42

Figure 4-7: A partial ABox view of the initial CPE system ontology 43

Figure 4-8: Partial view of the CVE Schema.. 44

Figure 4-9: NVD System Level Ontology .. 45

Figure 4-10: A partial ABox view of the initial CVE system ontology 45

ix

Figure 4-11: Snyk initial design .. 46

Figure 4-12: Snyk initial example... 46

Figure 4-13: A sample HackerOne record .. 47

Figure 4-14: Bug bounty System-level ontology .. 48

Figure 4-15: Data extracted from library.io .. 50

Figure 4-16: A partial ABox view of the initial Libraries.io system ontology 51

Figure 4-17: Dependencies for “deep-defaults” library .. 51

Figure 4-18: SEVONT Ontology Pyramid [65].. 53

Figure 4-19: Four-layer ontology abstraction model .. 57

Figure 4-20: Unidirectional vs. bi-directional dependencies. [63] 59

Figure 4-21: Maven Ontology Overview .. 60

Figure 4-22. CPE-Library integration model .. 61

Figure 4-23: A partial ABox view of the initial HackerOne system ontology 63

Figure 4-24: Nextcloud reports in NVD and HackerOne ... 64

Figure 4-25: Nextcloud graph example .. 65

Figure 4-26: Linking DBpedia to CWE. ... 66

Figure 5-1: Dependency graph vulnerability overview .. 70

Figure 5-2: Partial dependency graph for "mikel/mail " ... 71

Figure 5-3: Direct bounty query for “mikel/mail” project .. 72

x

Figure 5-4: Direct bounty result for “mikel/mail” project .. 72

Figure 5-5: Transitive bounty query for “mikel/mail” .. 73

Figure 5-6: Partial result of the transitive query for “mikel/mail” 73

Figure 5-7: Direct contribution measurement query for “Rafal Janicki” 74

Figure 5-8: Direct contribution measurements result for “Rafal Janicki” 74

Figure 5-9: Indirect contribution measurements query for “Rafal Janicki”...................... 75

Figure 5-10: Indirect contribution measurements result for “Rafal Janicki” 75

Figure 5-11: Expertise assessment query for “Rafal Janicki” .. 76

Figure 5-12: Expertise assessment result for “Rafal Janicki” ... 77

Figure 5-13: DBpedia integration query ... 78

Figure 5-14: A partial view DBpedia integration result - part 1 79

Figure 5-15: A partial view DBpedia integration result - part 2 79

xi

List of Tables

Table 2-1: List of some of the known VDBs .. 20

Table 4-1: CWE reasoning details .. 61

Table 5-1: Case studies environment. ... 69

Table 8-1: Vulnerability Specification.. 94

Table 8-2: CWE Specification .. 94

Table 8-3: CPE Specification.. 95

Table 8-4: Bug Bounty Specification ... 95

Table 8-5: Bounty Report Specification ... 95

Table 8-6: Bounty Hunter Specification ... 95

Table 8-7: Library Specification ... 96

xii

List of Acronyms

CAPEC Common Attack Pattern Enumeration and Classification
CPE Common Platform Enumeration
CVE Common Vulnerabilities Exposure
CVSS Common Vulnerabilities Scoring System
CWE Common Weakness Enumeration
DL Description Logic
NVD National Vulnerability Database
OWL The Web Ontology Language
RDF Resource Description Format
SE Software Engineering
VDB Vulnerability Database
SW The Semantic Web
OSS Open-Source Software

1

1Introduction
Traditional software development processes focused on closed architectures and platform-

dependent software that only support limited code reusability across project and organizational

boundaries. With introduction of the Internet, these boundaries have been removed allowing global

access, online collaboration, information sharing, and internationalization of the software industry.

Software development and maintenance tasks can now be shared amongst team members working

inside and outside organizations. Code reuse throughout the different resources such as software

libraries, components, services, design patterns, and frameworks published on the Internet has

become an essential part of today’s software development practice.

Open-Source Software (OSS) publishes source code and other related artifacts using

portals such as GitHub1, or Maven2. Such portals allow software artifacts to be shared and reused

globally. This reusability can take on different forms, such as integrating open-source projects into

existing software ecosystems (e.g., reuse of code libraries) or extending and customizing available

projects to meet specific stakeholders needs (e.g., creating specialized Linux distributions). Even

though globally shared knowledge resources facilitate and benefit from reuse and collaboration,

they also introduce new challenges to the Software Engineering (SE) community. Knowledge

1 https://github.com/
2 https://maven.apache.org/

Chapter 1

2

resources are no longer controlled by a single project or organization, instead they are

collaboratively managed across projects, organizations, or even global software ecosystems

boundaries. Among these challenges, Information Security (IS) has emerged as a major threat to

the software development community [1]. The importance of IS for the software community is

reflected by the fact that it has become an integrated part of the current SE best practices [2]. At

its core, IS promotes the access and use of different security resources during the development

process, such as secure coding practices and information about known software vulnerabilities.

In this thesis, we are particularly interested in the integration of information about known

software vulnerabilities into the software development process and how they can benefit

developers, maintainers, and security experts. Bug bounty platforms [3] along with security

vulnerabilities databases (VDBs) [4, 5] are two of the more well-known examples of such

knowledge resources, which can provide software professionals with access to existing security

issues affecting different software products. Public VDBs (e.g., National Vulnerability Database

(NVD3) have been introduced to track and publish known software vulnerabilities and solutions to

resolve them. These VDBs can be seen as a direct response by the software industry to the ever-

increasing number of software attacks, which are no longer limited to a particular project or

computer but now often affect hundreds of different systems and millions of computers.

1.1 Motivation
1.1.1 Research Objectives

Weaknesses in software systems are flaws, faults, bugs, vulnerabilities, and other errors

that left unaddressed and can make a system vulnerable to attacks. Examples of such flaws include

buffer overflows, improper certificate validation, or using components with known vulnerabilities.

These software vulnerabilities provide an entry point for attackers, giving affected systems a

3 https://nvd.nist.gov

3

greater attack surface [6]. Hackers can leverage this additional attack surface to gain direct access

to a system or network. From the moment a vulnerability is discovered until it is patched, a system

is potentially exposed to attacks. Since this exposure window leaves systems without protection,

it must be as short as possible. This identification, tracking, and reporting of vulnerabilities

becomes even more critical in today’s software ecosystems, where (vulnerable) components are

often shared across projects, organizations, and even software ecosystem boundaries.

To address the removal and management of known security threats, the security community

has introduced several knowledge sources that collect information about known software

vulnerabilities. For example, VDBs capture information about known software vulnerabilities,

their patches, and report on systems affected by these vulnerabilities. However, with this large

amount of security vulnerability data being spread across many VDBs, software developers are

struggling to identify and locate relevant resources. The situation is further complicated by the fact

that individual VDBs are based on different data models. Such heterogeneity in the data

representation is often the source of data ambiguity and inconsistency in VDBs and has become

another major challenge for organizations managing both disclosure and access to these

information resources. In addition, individual VDBs provide access to their information through

APIs, RSS feeds, or notification services, while sharing and integration of these resources have

remained an open question [7].

There have been many efforts on creating software analytics tools or services to support

programmers in managing known vulnerabilities (e.g., [8], [9]). However, the applicability of these

approaches is often limited due to several reasons:

1) The proposed tools have remained in information silos by relying on their own

proprietary data collection and models. While these models work well for supporting tool-specific

analytics services, they limit their ability to share, reuse and integrate data and analysis results with

other software analytics tools and knowledge resources.

4

2) The underlying knowledge models used by current analysis approaches neglect

supporting the seamless integration of new knowledge resources or the ability to deal with

incomplete data.

3) Their analysis support is often limited by their underlying knowledge models and

provides limited flexibility in terms of supporting user-specific analysis needs.

In this thesis, we take the advantage of the Semantic Web (SW) and its technology stack

(e.g., ontologies, Linked Data, SW reasoning services) to establish a unified knowledge graph

representation of vulnerability-relevant resources. Based on this knowledge graph, we can

extend and integrate the obtained knowledge with other resources. This enables having a more

flexible and comprehensive global vulnerability analysis approach that can provide system

developers and maintainers with guidance during the management of known vulnerabilities.

The research presented in this thesis is a continuation of work done by Sultan [10] and

Eghan [11] on semantic modeling in which they introduced a Security Vulnerability Analysis

Framework (SV-AF) that establishes traceability links between NVD, Maven, and the source code

of projects. In our research, we extended this work to include additional knowledge resources (e.g.,

bug bounty programs and additional vulnerability databases) to further enrich the knowledge base

that can form the basis for novel vulnerability analysis services.

1.2 Motivating Example

Nowadays many software companies offer solutions that integrate services, components,

and code from external resources. Such integrations, provide organizations with added value rather

than having to recreate those services or functionalities from scratch. Different techniques (e.g.,

5

APIs4, libraries, RESTful5 interfaces, RPC6) are used to build a trustworthy relationship between

separate working software applications. While many measures have been taken to maintain

software security, applications are still getting penetrated through a trusted third-party system that

is vulnerable to some recently exploited weaknesses. Apart from API connections, developers also

heavily rely on published libraries by the software community. These external components

introduce another penetration port for creating a vulnerable system. While developers can attempt

to manually monitor vulnerability databases for known vulnerabilities that might affect their

product, this type of monitoring has serval shortcomings.

1.) There are many VDBs and bounty platforms, as well as other resources that may contain

information about known vulnerabilities and would require to be monitored to stay ahead

of possible weaknesses that might affect their systems.

2.) API dependencies – while a developer might be aware of which APIs or libraries are used

in their system, these components might not be directly exposed to vulnerabilities but only

indirectly, through the reuse of other external vulnerable libraries. Identifying such

transitive dependencies manually is not only difficult but also error-prone since one must

consider several factors during this type of analysis, such as library versions and whether

(and how) a vulnerable code fragment in these libraries is used.

For example, Log4j7 is one of the most used logging Frameworks in Java that allows

developers to keep track of what happens in their software applications or online services. On

December 9, 2021, a Chinese security researcher sounded the alarm about a vulnerability in Log4j8

and was immediately exploited by hackers. The United States alone was hit with 10 million

4 https://en.wikipedia.org/wiki/API
5 https://en.wikipedia.org/wiki/Representational_state_transfer
6 https://en.wikipedia.org/wiki/Remote_procedure_call
7 https://logging.apache.org/log4j/2.x/
8 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228

6

attempted exploits per hour, with attacks specifically targeting certain critical infrastructure sectors

[12]. Companies like Apple, Amazon, Cloudflare, IBM, Microsoft, and Twitter began

experiencing a barrage of attacks and many had no choice but to shut down systems until the

vulnerability could be resolved [12]. Even the Quebec government shut down nearly 4000 of its

sites as a preventive measure [13]. This example illustrates, how a widely used vulnerable source

code can impact not only individual applications but also the complete software ecosystem and

even commercial systems and organizations are not immune to such vulnerabilities.

Internationally, estimates suggest nearly one-half of global corporate networks experienced

a successful exploit in the first five days following the vulnerability’s discovery [14]. According

to [15], 60% of the Java projects monitored by Snyk that are using the Log4j library are using it

as an indirect dependency. Figure 1-1 shows the results of a study conducted in 2020, comparing

the direct and indirect vulnerabilities found in 5 popular package manager repositories.

Figure 1-1: Vulnerabilities from direct vs indirect dependencies [15]

The goal of this thesis is therefore to address some of these challenges, by providing a

unified knowledge representation of resources and artifacts related to known software

vulnerabilities. This unified representation not only allows us to eliminate some of these traditional

information silos these resources have remained in but also provides the foundation for novel

7

software analytics services that can support impact and ripple effect analysis of vulnerabilities on

software products and even complete software ecosystems.

1.3 Contributions

The main contributions of our work are as follows:

• A review of known software vulnerability resources (Chapter 2)

• Proposing a methodology that establishes a knowledge graph for software artifacts.

(Chapter 3)

• Introduce a knowledge graph for software vulnerability related resources based on our

knowledge modeling methodology. (Chapter 4)

• Discuss major design decisions we applied to enhance the ontology design and illustrate

how our approach takes advantage of reasoning services. (Chapter 4)

• Illustrate how our integrated knowledge modeling approach can support novel types of

knowledge-driven software analytics services. More specifically, we show examples of

vulnerability analysis across VDBs and Bug Bounty Platforms. (Chapter 5)

The remainder of the thesis is organized as follows: Chapter 2 provides background related

to bug bounty programs and semantic web technologies. Chapter 3 presents a methodology to

create a knowledge graph for software artifacts. Chapter 4 applies our methodology to create a

knowledge graph for known software vulnerabilities. Chapter 5 demonstrates some use cases using

developed ontology and acquired data. Related work and discussions are discussed in Chapter 6.

Finally, Chapter 7 offers concluding remarks and outlines future research directions you may find

Appendices in Section 8 for more information

8

2Background
In this chapter, we provide a brief overview of the core techniques and terminologies used

in our research. If you are already familiar with these concepts, you can safely move on to the next

chapter as cross-references are provided wherever specific background information is required.

2.1 The Semantic Web

The Semantic Web has been defined by Berners-Lee et al. as “an extension of the Web, in

which information is given well-defined meaning, better-enabling computers and people to work

in cooperation” [16]. It forms a Web from documents to data, where data should be accessed using

the general Web architecture (e.g., URIs). Using this Semantic Web infrastructure allows data to

be linked, just as documents (or portions of documents) are already, allowing data to be shared

and reused across application, enterprise, and community boundaries. Some of the knowledge

modeling challenges which are addressed by the Semantic Web include vastness, vagueness,

uncertainty, inconsistency, and deceit of information. Ontologies are an important foundation of

the SW as they allow knowledge to be shared between different agents and the creation of common

terminologies for understanding [17]. In computer science, a widely accepted definition has been

introduced by Studer [18]: “an ontology is a formal, explicit specification of a shared

conceptualization.” Ontologies allow the specification of concepts and relationships in a domain

of discourse. Having such a formal representation improves portability, flexibility, and

information-sharing problems associated with traditional databases [19]. In addition, while

Chapter 2

9

traditional database systems assume complete knowledge (closed world assumption), ontologies

support the modeling of incomplete knowledge (open world assumption), as well as the

extensibility of the knowledge model (ontologies).

In a Semantic Web, data can be processed by computers as well as by humans, including

inferring new relationships among pieces of data. For machines to understand and reason about

knowledge, this knowledge needs to be represented in a well-defined, machine-readable language.

The Semantic Web can be considered a collaborative project that is planned and designed to

achieve a universal medium for exchanging information on the World Wide Web in a way that

machines can understand and process this information. To provide this meaningful information for

machines, there is a need in creating data that describes data on the web which is called Metadata.

Consequently, Metadata gives machines a method to process the meaning of things which is called

semantics. Hence, when computers have semantics, they are qualified for solving complex

semantical optimization problems such as returning relevant search results.

2.2 The Semantic Web and its Technology Stack

Ontologies are an important foundation of the SW, as they allow knowledge to be shared

between different agents and the creation of common terminologies for understanding [17]. The

current data model used to represent this meta-data in SW is the Resource Description Format

(RDF). RDF is used to formalize meta-models in the form of <subject, predicate, object>, which

are called triples. RDF triples make statements about resources, with a resource in the SW being

anything—a person, project, software, a security bug, etc. To make triples persistent, RDF triples

stores are used, with each triple being identified by a Uniform Resource Identifier (URI). The Web

Ontology Language (OWL) [20] is used on top of the RDF layer (see Figure 2-1). It is a standard

modeling language put forward by the W3C to pursue the vision of the SW. OWL provides for

machine understandable (i.e., capturing semantics) information, allowing Web resources to be

automatically processed and integrated. The widely used OWL sub-language OWL-DL is based

on the Description Logics (DLs) [21].

10

Figure 2-1: Semantic Web technology stack. [22]

2.2.1 Description Logic

A DL-based knowledge representation system provides typical facilities to set up

knowledge bases and to reason about their content [21]. Figure 2-2 illustrates a typical DL-based

knowledge system. Such a knowledge base (KB) consists of two components—the TBox contains

the terminology (i.e., the vocabulary of an application domain), and the ABox contains assertions

about named individuals in terms of this vocabulary. The terminology is specified using

description languages introduced previously in this section, as well as terminological axioms,

which make statements about how concepts or roles are related to each other.

11

Figure 2-2: Description Logic System

In the most general case, terminological axioms have the form:

𝐶 ⊑ 𝐷 (𝑅 ⊑ 𝑆) 𝑜𝑟 𝐶 ≡ 𝐷 (𝑅 ≡ 𝑆),

where 𝐶 and 𝐷 are concepts (𝑅 and 𝑆 are roles). The semantics of axioms are defined as: an

interpretation 𝑰 satisfies 𝐶 ⊑ 𝐷 (𝑅 ⊑ 𝑆) if 𝐶𝑰 ⊑ 𝐷𝑰 (𝑅𝑰 ⊑ 𝑆𝑰).

A TBox, denoted as 𝑻, is a finite set of such axioms. The assertions in an ABox are

specified using concept assertions and role assertions, which have the form 𝐶(𝑎), 𝑅(𝑎, 𝑏), where 𝐶

is a concept, 𝑅 is a role, and 𝑎, 𝑏 are names of individuals. A DL system not only stores

terminologies and assertions but also offers services that allow reasoning about them. Typical

reasoning services for a TBox are to determine if a concept is more general than another (i.e.,

subsumption) or if a concept is satisfiable (i.e., non‐contradictory). Reasoning services for an

ABox are to find out whether its set of assertions is consistent, and whether the assertions in an

ABox entail that a particular individual is an instance of a given concept description.

A DL knowledge base might be embedded into an application in which some components

interact with the KB by querying and modifying the knowledge, i.e., by adding and retracting

concepts, roles, and assertions. However, many DL systems also provide an application

12

programming interface that consists of functions with well‐defined logical semantics, which

application programs can use to operate on the KB [21].

2.2.2 The Resource Description Framework (RDF)

RDF was developed by the World Wide Web Consortium (W3C) to allow for the

automated semantic processing of information, by structuring information using individual

statements that consist of (Subject, Predicate, Object). RDF is the foundation of the Semantic Web

and what provides its innate flexibility. All data in the Semantic Web is represented in RDF,

including schema describing RDF data. Although frequently referred to as a ‘language’, RDF is

mainly a data model. It is based on the idea that the things being described have properties, which

have values, and that resources can be described by making statements. RDF prescribes how to

make statements about resources, in particular, Web resources, in the form of subject-predicate-

object expressions. RDF is not like the tabular data model of relational databases. Nor is it like the

trees of the XML world. Instead, RDF is a graph and is classified as a No-SQL database type.

The basic RDF components include statements, Uniform Resource Identifiers, properties,

blank nodes, and literals. RDF-star (formerly RDF*) extends RDF with support for embedded

triples. RDF is a bunch of nodes connected by edges where both the nodes and edges have labels.

Web Ontology Language (OWL)

OWL is an ontology language for the Web. OWL is a Semantic Web language designed to

represent rich and complex knowledge about things, groups of things, and relations between

things. OWL is a computational logic-based language such that knowledge expressed in OWL can

be exploited by computer programs, e.g., to verify the consistency of that knowledge or to make

implicit knowledge explicit. OWL documents, known as ontologies, can be published on the

World Wide Web and may refer to or be referred to from other OWL ontologies. OWL is part of

the W3C’s Semantic Web technology stack, which includes RDF, RDFS, SPARQL, etc. The

current version of OWL, also referred to as “OWL 2”, was developed by the W3C OWL Working

Group and published in 2009, with a Second Edition published in 2012. Syntactically, an OWL

13

ontology is a valid RDF document and as such also a well-formed XML document. This allows

OWL to be processed by the wide range of XML and RDF tools already available.

Its primary uses are fast and flexible data modeling and efficient automated reasoning.

Semantically, OWL is based on the description logics [21]. Generally, description logics are a

family of logics that are decidable fragments of first-order predicate logic. These logics focus on

describing classes and roles and have set-theoretic semantics.

2.2.3 SPARQL

SPARQL is a query language for dealing with information from RDF graphs. As a data

access language, it is suitable for both local and remote use. It provides facilities to:

• extract information in the form of URIs, blank nodes, and literals.

• extract RDF subgraphs.

• construct new RDF graphs based on information in the queried graphs.

The RDF data model expresses information as graphs, consisting of triples with subject,

predicate, and object. Many RDF data stores hold multiple RDF graphs, and record information

about each graph, allowing an application to make queries that involve information from more

than one graph. The SPARQL query language is based on matching graph patterns. A SPARQL

query is executed against an RDF Dataset which represents such a collection of graphs. Different

parts of the query may be matched against different graphs. There is one graph, the default graph,

which does not have a name, and zero or more named graphs, each identified by IRI [23].

There are three types of data sources that can be queried: RDF files, Triple Stores, and

SPARQL endpoints.

• RDF file – A file containing RDF can be loaded by an application into its corresponding

graph and be queried against. RDF can be held in several different file formats (i.e. .rdf,

.xml, .nt, .owl, .ttl).

14

• Triple Store – A specialized database used for the storing and retrieving of RDF statements.

Every record in the database must follow the triple format of subject-predicate-object. A

triple store can also be referred to as an ‘RDF Data Store’ as well as an ‘RDF Database’

[24].

• SPARQL Endpoint9 – A web service interface for human or machine users to provide

SPARQL queries and receive results. SPARQL endpoints are important for Linked Data

since they allow datasets to be publicly accessible.

In addition to RDF, OWL, and OWL-DL, the SW community provides tools to process

OWL semantics and RDF data. Jena10 emerged as a Java framework for building applications and

providing a programmatic environment for RDF and OWL. Reasoners (e.g., Jena) can infer new

facts about the designed ontology and form a set of asserted axioms. RDF databases, such as

Virtuoso11 and AllegroGraph12, are used to materialize and store RDF triples. SPARQL is an RDF

query language, that is, a semantic query language for databases able to retrieve and manipulate

data stored in RDF format.

2.3 Knowledge Graphs

A graph is one of the fundamental data abstractions in computer science. Virtually every

graph application needs to store and query the graph. The knowledge graph is a virtual data layer

on top of the existing databases or data sets to connect all data—whether structured or

unstructured—at scale [25]. KGs contain a large amount of prior knowledge but can also

effectively organize data. Primarily, a knowledge graph represents, among other things, a model

of a knowledge domain created by experts using intelligent algorithms in the machine learning

[25]. A knowledge graph is a structured representation of facts, consisting of entities, relationships,

9 https://www.w3.org/wiki/SparqlEndpoints
10 https://jena.apache.org/
11 https://virtuoso.openlinksw.com/
12 https://allegrograph.com/

https://www.w3.org/wiki/SparqlEndpoints

15

and semantic descriptions. Entities can be real-world objects and abstract concepts, relationships

represent the relation between entities, and semantic descriptions of entities, and their relationships

contain types and properties with a well-defined meaning. They have been widely used for

question-answering systems, search engines, and recommendation systems. All these facets rely

on the support of knowledge reasoning over knowledge graphs. Knowledge reasoning over

knowledge graphs aims to identify errors and infer new conclusions from existing data. New

relations among entities can be derived through knowledge reasoning and can feed back to enrich

the knowledge graphs, and then support the advanced applications. Considering the wide

application foreground of knowledge graphs, the study of knowledge reasoning on large-scale

knowledge graphs has become one research focus in natural language processing in the past few

years [26].

The term knowledge graph is often used as synonymous with knowledgebase however,

there is a difference. Knowledge graphs can be viewed as a graph due to their graph structure.

While it involves formal semantics, it also serves as a knowledge base for interpretation and

inference over facts [27, 28]. Knowledge-aware models benefit from the integration of

heterogeneous information, rich ontologies and semantics for knowledge representation, and

multi-lingual knowledge. Ontologies represent the backbone of the formal semantics of a

knowledge graph. They can be seen as the data schema of the graph and serve as a formal contract

between the developers of the knowledge graph and its users regarding the meaning of the data in

it.

2.3.1 Knowledge Graph vs Linked Data

A key feature of a KG is that entity descriptions should be interlinked with one another.

The definition of one entity includes another entity. This linking is how the graph forms, (e.g. A

is B. B is C. C has D. A has D). Knowledge bases without formal structure and semantics, (e.g.

Q&A knowledge bases) do not represent a KG.

Linked Data by definition is structured data that is interlinked with other data. It builds

upon a suite of web standards such as HTTP, RDF, and IRIs, to allow the linking of data, so that

16

a person or machine can explore this web of data [29]. In [30] linked data was defined as “a set of

best practices for publishing and connecting structured data on the Web.”. It focuses on

interconnecting data and resources on the Web by defining relations between ontologies, schemas,

and/or directly linking the published data to other existing resources on the Web. Linked data

enables publishing machine-readable interpretation of heterogeneous sources of information. It is

possible to have an expert system that has a collection of data organized in a format that is not a

graph but they have to rely on automated deductive processes such as a set of ‘if-then’ rules to

facilitate analysis.

Knowledge Graphs are created by describing Entities and Entity Relationships that are

deployed using Linked Data principles. Knowledge graphs acquire and integrate information into

an ontology and reasoner can then be used to derive new knowledge [31]. Linked data is generally

considered fundamental to building a knowledge graph, linked data is not in itself a knowledge

graph. In other words, linked data is a necessary but not sufficient condition for knowledge graph

construction.

2.3.2 Examples of Big Knowledge Graphs

DBpedia is a crowd-sourced community effort to extract structured content from the

information created in various Wikimedia projects13. This structured information resembles an

open knowledge graph (OKG) which is available to everyone on the Web. DBpedia data served as

Linked Data, which is revolutionizing the way applications interact with the Web. One can

navigate this Web of facts with standard Web browsers, and automated crawlers or pose complex

queries with SQL-like query languages (e.g., SPARQL). DBpedia is connected with other Linked

Datasets through approx. 62 million RDF links. As of June 2021, The DBpedia core KG contains

more than 850 million triples [32].

13 https://www.dbpedia.org/about/

17

Another big KG is the Google Knowledge Graph [33], which enables search for

information published on the Internet. Google’s Knowledge Graph is not just rooted in public

sources such as Freebase, Wikipedia, and the CIA World Factbook, it is also augmented at a much

larger scale and currently contains more than 500 million objects, as well as more than 3.5 billion

facts about these objects and their relationships. The KG design is optimized to support user

searches and the resources available on the Web [33]. Figure 2-3 is an illustration of mapped

concepts in DBpedia.

Figure 2-3: DBpedia concepts map [34]

18

2.3.3 Graph Databases versus Relational Databases

The following section compares briefly graph databases used by the Semantic Web with

traditional relational databases. Relational databases exist for many decades and are the database

technology of choice for most traditional data-intensive storage and retrieval applications. In [35]

authors presented analytical research and compared relational databases with graph databases. The

paper found that value retrieval or data processing is very fast in graph databases compared to

RDBMS. They identified that a graph database performs much better than RDBMS when it comes

to objectivity, also graph databases excel when it comes to data integration. Relational databases

are typically closed systems. One approach to data integration relies on creating a global schema

that captures the interrelationships between the data items represented across these databases.

However, creating such a global schema is extremely difficult, since schemata and the meaning of

the data they store will vary from database to database. Another problem with creating such a

global schema would be its extendibility and evolution in terms of adding new resources

(databases) or modifying existing schemata. These changes might potentially impact different

parts of the global schema and might require significant changes to applications using this global

schema. Because of the challenges in creating a global schema, it is convenient to sidestep this

issue and convert the relational data into a database with the generic schema of triples, i.e., a

knowledge graph. The mappings between the attributes are created on an as-needed basis, for

example, in response to addressing specific business questions, and can themselves be represented

within a knowledge graph.

2.4 Vulnerability Databases and Repositories

To date, software developers have often overlooked security issues throughout the software

development lifecycle. Existing software design and engineering processes provide little guidance

about security, and the communication disconnect between software developers and cybersecurity

experts has led to the widespread introduction of software vulnerabilities [36]. This lack of

19

awareness often results in: 1.) exploitable vulnerabilities in software systems and 2.) developers

being unaware that their software might have been exposed to a vulnerability.

The situation is further complicated, with today’s software system depending more and

more often on external components and libraries, which are managed by external stakeholders.

Requirements engineers have long recognized the importance of requirements dependency

analysis to discover and manage critical relationships among requirements [37]. According to [37],

up to 70% of total software errors are caused by interacting requirements, making requirements

dependency errors a significant software development and quality challenge. For example, in 2018,

a data breach caused by a security vulnerability exposed more than 50 million Facebook user

accounts to malicious attackers [38]. This data breach was caused by two requirements, namely

“view as” and “upload birthday video” [39]. Although “upload birthday video” was introduced in

2017, its interdependency with other requirements (especially with “view as”) was not thoroughly

tested, resulting in a serious security breach.

VDBs are the result of an effort by the security community to collect information about all

known security flaws in software. A vulnerability database is a platform for collecting,

maintaining, and disseminating information about discovered computer security vulnerabilities.

From the outset, this has been a massive challenge because vulnerability information is generated

by thousands of sources including software vendors, vulnerability researchers, and software users.

A VDB describes the identified vulnerability, assesses the potential impact on affected systems,

and any workarounds or updates to mitigate the issue. VDBs assign a unique identifier to each

vulnerability cataloged such as a number or alphanumeric designation and make the vulnerability

information available via web pages, exports, or API. In Table 2-1 we listed some of the well-

known VDBs and the features they provide.

20

Database Established Public API Vulnerability
CVE14 1999 Yes No 150,799
NVD15 2005 Yes Yes 159,865
Vuldb16 1997 Yes Yes 171,574
SecurityFocus Vulnerability DB17 1999 Yes No From CVE
SecurityTracker18 2001 No No From CVE
ZeroDayInitiative19 2005 Yes Yes From CVE
Exploit Database20 2010 Yes No From CVE
Japan Vulnerability Notes21 2007 Yes No From CVE
AusCERT Bulletins22 1993 Yes Yes From CVE
CERT-EU Security Advisors23 2012 Yes No From CVE
VulnBD Cyber risk24 2011 No Yes 250,756

Table 2-1: List of some of the known VDBs

NVD is one of the most widely used vulnerability databases. It was established in 2005 to

provide a U.S. government repository for data about software vulnerabilities and configuration

settings. The objective of NVD was to use open standards to provide reliable and interoperable

information about vulnerabilities, their impact metrics, technical assessment methods, IT product

identification data, and references to the remediation assistance [4]. NVD is maintained by the US

government, strives to accurately document all publicly known vulnerabilities, and effectively

serves as the industry’s standard. Both commercial security services, and open-source security

tools depend on the NVD’s vulnerability information to function effectively [40].

14 https://cve.mitre.org/
15 https://nvd.nist.gov/
16 https://vuldb.com/
17 https://bugtraq.securityfocus.com/
18 http://www.securitytracker.com/
19 https://www.zerodayinitiative.com/
20 https://www.exploit-db.com/
21 https://jvn.jp/en/
22 https://www.auscert.org.au/bulletins/
23 https://cert.europa.eu/
24 https://vulndb.cyberriskanalytics.com/

21

NVD is based on the list of Common Vulnerability and Exposures (CVE) entries. Using

CVEs and CVE identifiers ensures that unique vulnerabilities are discussed, and that information

about the same vulnerability is shared by different parties. NVD is often interchangeably used with

the CVE list but there are some differences between the two resources despite having a very close

relationship.

The CVE dictionary was launched in 1999, five years before the NVD, and is run by the

non-profit MITRE Corporation which was mentioned above. Whereas the NVD is a more robust

dataset describing the vulnerabilities, the CVE dictionary is more barebones, providing the straight

facts of the CVE ID number (CVE-year-unique id #), as well as one public link. To put it simply,

the CVE is the organization that receives submissions and IDs them, while the NVD adds the

analysis and makes it easier to search and manage them.

CWE seeks to make vulnerability management more streamlined and accessible. The

community-developed catalog features hardware and software weaknesses and is described as a

common language, to be used by security tools, and as a baseline for weakness identification,

mitigation, and prevention efforts. CWE can be considered a dictionary of software vulnerabilities,

while CVE is a list of known instances of vulnerability for specific products or systems. NVD

integrates CWE into the scoring of CVE vulnerabilities by providing a cross-section of the overall

CWE structure.

While NVD is the largest and most well-known VDB, is not the only one. The CERT

Vulnerability Notes Database, includes summaries, technical details, remediation information, and

lists of affected vendors. Most vulnerability notes are the result of private coordination and

disclosure efforts. VulnDB is a commercial Risk Based Security vulnerability database. VulnDB

tracks vulnerabilities in third-party libraries and claims to cover over 47,000 vulnerabilities that

are not found in CVE or NVD. SecurityTracker is another commercial vulnerability dataset that

covers vulnerability entries that have CVE-IDs. Another publicly available vulnerability database

22

is exploit-db. The Exploit Database25 is a CVE-compliant archive of public exploits and

corresponding vulnerable software, developed for use by penetration testers and vulnerability

researchers.

2.5 Bug Bounty Programs

Whether it is a small or a large organization, internal security teams require an external

audit from other real-world hackers to test their applications for them. An increasingly popular

approach to identifying vulnerabilities in software is to offer rewards to security researchers that

are external to an organization (“hackers”) to find and disclose vulnerabilities [3]. Such bug bounty

programs, also known as vulnerability rewards programs are crowd-sourced mechanisms that

allow companies to pay hackers individually for their work in identifying vulnerabilities in their

software. Application vendors pay (bounty) hackers to detect and identify vulnerabilities in their

software, web applications, and mobile applications. These bounty hunters produce vulnerability

reports and send them to the company that owns the program to fix those flaws quickly. If the

report is accepted by the company, the reporter gets paid [41].

Public bug bounty programs

These programs are open to anyone who wants to participate. This program may prohibit some

participants based on their reputation and track record. In general, anyone can participate in a

public bounty program, which specifies the scope, the rules of engagement, as well as the bounty

guidelines.

25 https://www.exploit-db.com

23

Private bug bounty programs

Invite-only programs are available for selected participants, often selected based on their skill

level, experience with the particular application, and other statistics.

There are a few differences between a public and private program. Conventionally,

programs tend to start as private and over time evolve into public programs. This is not always

true but, mostly, businesses start a private bug bounty program and invite a group of researchers

or developers to test their applications before the program goes public to the community. Often,

companies will not open their programs to the public, to allow them to control the hacker activity

in the sections that are critical to the organization. This reduces the number of low-severity

vulnerabilities in out-of-scope applications. Many organizations use also this approach to verify

their security posture.

2.5.1 Bug Bounty platforms

Bug bounty platforms manage bounty programs for different companies, including

advertisement and matching of new bounties with hackers/bounty hunters, and managing the

reward payments. Some of the most popular public platforms are listed below.

HackerOne

 HackerOne26 is one of the major vulnerability collaboration and bug bounty hunting platforms

that connect companies with bounty hunters. It was one of the first start-ups to commercialize and

utilize crowd-sourced security and hackers as a part of its business model. By May 2020,

HackerOne has made a total of $100 million in the bug bounty payments [42], with half of

HackerOne’s bounties being paid just in 2019, and Gartner projects that by 2022, 50% of

enterprises will employ crowdsourced cybersecurity [43].

26 https://hackerone.com/

24

Bugcrowd

Bugcrowd27 Inc. is another leading in the crowd-sourced cybersecurity field. The company has

developed a coordination platform that connects businesses with security researchers to test their

applications [43].

Synack

Synack28 includes a vulnerability intelligence platform that automates the discovery of exploitable

vulnerabilities for reconnaissance and turns them over to the company's freelance hackers to create

vulnerability reports for clients. Synack is used by the top 25 enterprise software start-ups [44]

27 https://www.bugcrowd.com/
28 https://www.synack.com/

25

3A Methodology to Establish a
Knowledge Graph for Software
Artifacts

Software development involves software artifacts that are not limited to source code (e.g.,

build scripts, documentation, issue trackers), created by different stakeholders and used during

different phases of the development process. The main issue is that these artifacts have remained

in information silos with limited support for knowledge sharing and reuse across artifact

boundaries. The Mining software repository community has addressed this problem by making

historical data found in these knowledge resources not only actionable data, but also improving

the accessibility and traceability of these resources. Various techniques have been applied, such as

the machine learning [45, 46], information retrieval [47], and summarization techniques [48] to

assist development teams during software analytics tasks including code search, duplicate bug

report detection, traceability link recovery [49].

Another more recent research avenue to link software artifacts is knowledge graphs that

are used to model software artifacts. In [50] a methodology is introduced to locate source files,

given a natural language description of bugs that uses a knowledge graph. Another approach was

extracting and indexing artifacts to form a knowledge graph. Also, [51] proposed to construct a

knowledge graph of a code repository to create links between issue reports and corresponding code

commits.

Chapter 3

26

In this research, we build upon this existing research and introduce a new methodology

that takes advantage of knowledge graphs to provide a standardized knowledge representation to

support the linking and inference of new knowledge across software artifact boundaries. More

specifically, our methodology integrates knowledge resources found in the software vulnerability

domain, such as VDBs and bounty programs. The goal of our proposed methodology is to provide

a step-by-step process of constructing such a knowledge graph.

Developing such a vulnerability knowledge graph is an iterative process since the

ontologies used for the data representation have to be sufficiently expressive and flexible to allow

knowledge reuse and sharing, as well as for the inference of new knowledge to support different

SE tasks. In this chapter, we walk through the basic steps of our methodology, as illustrated in

Figure 3-1. These steps include the selection and acquisition of knowledge resources (Section 3.1),

knowledge modeling process (Section 3.2), data extraction (Section 3.3), data cleaning and

preprocessing (Section 3.4), the population of the knowledge graph (Section 3.5) and how this

unified knowledge model can be used to support various software vulnerability related software

analytics tasks (Section 3.6). Also, the evolution of the knowledge model will be addressed

(Section 3.7)

Figure 3-1: KG development process

27

3.1 Selection and acquisition of knowledge resources (Step #1)

As discussed throughout the thesis, vulnerabilities and weaknesses in software systems are

one of the primary causes of security threats and breaches. These vulnerabilities not only affect

the usability of these affected systems, but software productivity and competitiveness are also

increasingly dependent on the successful management of vulnerability information. As discussed

earlier (Chapter 2), various resources exist to manage and centralize vulnerability-related

information that are presented in Figure 3-2.

Figure 3-2: Schematic KG view

28

The key to any successful knowledge modeling approach is to (1) identify knowledge

resources that are rich enough to provide meaningful information for specific application contexts,

that are (2) reliable in terms of the quality of the information they provide, and they are (3) readily

accessible. Here we explain the key factors for our purposes.

Richness: We define a knowledge resource to be rich enough if it contains or references

information related to known vulnerabilities, information that can be used to classify

vulnerabilities or it can be used to capture potential effects of known vulnerabilities on software

systems.

Reliability: For the reliability of an information resource, we only consider resources for

which the content is actively managed. For example, resources that are managed as part of a

community effort (e.g., VulDB), by the government (e.g., NVD), an organization (e.g.,

HackerOne), or a combination of these. Such information management should include but is not

limited to the validation of information stored in the information resource, regularly updated,

information consistency (e.g., removal of outdated, no longer valid information).

Accessibility: We only consider data sources that are readily (publicly) accessible either

through a Web interface/API, as a dataset in a standard representation format (e.g., JSON), or

which can be extracted (crawled) using existing libraries (e.g., libraries.io).

Ontologies can capture highly complex ideas and business logic by providing not only a

standardized approach for representing knowledge, but also supporting the inferences of new

knowledge using SW reasoners to infer symmetry, asymmetry, inversion, composition, and

transitivity relations. Any ontology design effort should be based on an incremental modeling

approach, where one should identify a few critical questions that the ontology needs to answer.

Modeling for only a few use cases will provide immediate value to the end-users (by having a

working model implemented quickly) and allows optimizing the ontology for these specific use

cases. This is a contradictory approach with modeling a full domain which typically leads to an

ontology design that might be too complex and not optimized for knowledge interference and

linking of sub-ontologies.

29

We identify the following initial four use cases which our knowledge graph should support:

1. Scanning for vulnerabilities in a project or any of its direct or indirect dependencies

2. Measuring the number of projects potentially impacted by a bounty hunter with considering

the number of dependents each project has

3. Combining HackerOne reports with CWE records to find areas of expertise for a bounty

hunter by counting the number of CWE-IDs

4. Being able to integrate data from this KG to other remote graphs

Knowledge graph provides us with the ability to facilitate knowledge inferences such as

symmetry, asymmetry, inversion, composition, and transitivity relations. We then further refine

and enrich the initial design of these ontologies by adding additional relations and properties. This

enables us to have a semantic model that is rich enough to allow the inference of knowledge using

basic SW reasoning (RDFS++), which includes inferences such as sameAs inverseOf,

TransitiveProperty. Protégé29 is the most well-known ontology editor, developed by Stanford

University in the 1980s [52]. Protégé supports features of OWL and RDFS and also includes

various reasoners to test and query the ontology. After modeling the ontology in Protégé is

completed, the ontology will be imported to our triple-store.

3.2 Schema Extraction and Ontology Design (Step #2)

Given that ontologies have been used for years, many ontologies have already been created

to model various domains. Reusing an existing ontology will not only reduce the time it takes to

design an ontology but also contributes towards the standardization and reuse of knowledge

models. The Linked Open Vocabularies30 portal, provides a collection of open-source vocabularies

and ontologies such as DBpedia31, Friend of Friend, or Schema.org [53]. These general ontologies

29 https://protege.stanford.edu/
30 https://lov.linkeddata.es/dataset/lov/
31 https://www.dbpedia.org

30

can be used to extract alternative descriptions and labels for defining classes and relationships.

Our knowledge modeling process consists of three major steps and is inspired by the methodology

introduced by Noy et al. [54], as well as a bottom-up knowledge modeling approach similar to the

one used by Van der Vet et al. [55]. We first perform a manual review of the documentation from

selected vulnerability-relevant software artifacts and existing ontologies to identify and extract

concepts and properties used by the individual resource. Next, we manually inspect these extracted

concepts and properties for a resource to derive an initial version of the corresponding system-

specific ontologies. These system-level ontologies are not yet optimized in terms of knowledge

reuse, integration, or inference of new knowledge. For the model optimizations, we apply an

iterative bottom-up modeling approach. During this bottom-up modeling approach, we identify

and extract shared concepts and attributes from these system-specific ontologies into different

layers of abstraction (upper ontologies). During this ontology design step, we also consider our

different use cases and introduce additional relations, constraints, and properties to be able to take

advantage of semantic web reasoning services.

3.3 Data Extraction (Step #3)

After establishing the knowledge graph structure, data (facts) must be extracted from the

original knowledge resources. Data extraction is therefore the first step in a data ingestion process

called ETL (extract, transform, and load). The goal of ETL is to prepare data for analysis. The

facts are extracted from (public) repositories or SaaS (Software as a Service) platforms. Since we

consider numerous artifacts that contain data at various abstraction and representation types,

different data extraction methodologies are required. As part of the extraction process, data has to

be extracted from files, web services, or using scraping scripts directly from web pages. While

many of the data sources (e.g., VDBs) are already stored in a structured and machine-readable

format, other resources will require additional techniques (e.g., Information Retrieval [56]) to

extract the facts from their unstructured representations. As part of the extraction process, one also

must consider how the facts are updated by the various knowledge providers to ensure the long-

31

term relevance and consistency of the extracted data. In general, there are three primary approaches

provided by the knowledge resources:

• Full extraction: Knowledge resources provide regular complete data dumps. These

snapshots/data dumps contain the full data history. However, they will require additional

post-processing to extract recent updates or to repopulate the knowledge graph (after

performing a full data cleaning on the often very large data dump) with all the facts.

• Incremental extraction: Some data sources do provide regular incremental updates to

their knowledge base. During the extraction process, one must identify and propagate

changes. One drawback of incremental extraction is that it may not be able to detect deleted

records in the source data. Another drawback is that the data is updated on-demand only

(no real-time data synchronization).

• Update notifications: The ability to subscribe to knowledge changes and to be notified by

the knowledge resources if new facts/data become available. All we need to do is to handle

published data updates. This data extraction approach has several advantages in terms of

keeping the modeled knowledge resources up-to-date. Unfortunately, many of the

knowledge sources do not yet provide this feature.

3.4 Data Pre-processing (Step #4)

After the fact extraction, some data pre-processing and data cleaning will be required to

improve data quality. Data quality is affected by data inconsistencies, data duplication as well as

general noise in the data (non-relevant or even wrong data) that needs to be dealt with during the

data processing step. If data quality is low, later analysis of this data will be affected. Data cleaning

is a process of polishing the data and removing noise in a dataset. While data cleaning is not a

standardized process and depends on the data source, the following processing steps are generally

performed:

A) Removal of duplicate or irrelevant facts. Duplicate observations will happen most often

during data collection. When you combine data sets from multiple places, scrape data, or

32

receive data from clients or multiple departments, there are opportunities to create duplicate

data. The removal of duplication is one of the largest areas to be considered in this process.

Irrelevant observations are when you notice observations that do not fit into the specific

problem you are trying to analyze.

B) Fixing structural errors: Structural errors are when you measure or transfer data and notice

strange naming conventions, typos, or incorrect capitalization. These inconsistencies can

cause mislabeled categories or classes. For example, you may find “N/A” and “Not

Applicable” both appear, but they should be analyzed as the same category.

C) Filter unwanted outliers: Often, there will be one-off observations where, at a glance, they

do not appear to fit within the data you are analyzing. If you have a legitimate reason to

remove an outlier, like improper data entry, doing so will help the performance of the data

you are working with. This step is needed to determine the validity of that number. If an

outlier proves to be irrelevant for analysis or is a mistake, it may be removed.

Data transformation is the process of converting data from one format or structure into

another. Transformation processes can also be referred to as data wrangling, or data munging,

transforming, and mapping data from one "raw" data form into the format required at the next step

of our methodology – the population of the knowledge graph (triplestore).

3.5 Knowledge graph population (Step #5)

In this step, the pre-processed data (facts) are transformed into semantic triples based on

the RDF framework. The transformation and population process rely on the generation of unique,

de-referenceable, and HTTP-resolvable URIs for the resulting triples. We use Python and its third-

33

party RDFLib32 to transform the extracted facts into RDF data. RDFLib is an RDF library for

Python which includes a SPARQL [23] implementation. The library also contains both in-memory

and persistent Graph back-ends. RDF data is a graph where the nodes are URI references, Blank

Nodes, or Literals. In RDFLib, these node types are represented by the classes URIRef, BNode,

and Literal. URIRefs and BNodes can both be thought of as resources, such as a person, a

company, a website, etc. A BNode is a node where the exact URI is not known - usually a node

with identity only with other nodes. A URIRef is a node where the exact URI is known. In addition

to representing some subjects and predicates in RDF graphs, URIRefs are always used to represent

properties/predicates and Literals represent object values, such as a name, a date, a number, etc.

Using RDFLib we construct the graph in-memory and persistent storage of these graphs are

achieved by a triplestore. Being a graph database, triplestores store data as a network of objects

with materialized links between them. This makes RDF triplestores the preferred choice for

managing highly interconnected data. Triplestores are more flexible and less costly than a

relational database and allow for the construction of large knowledge graphs. Such an RDF

database often called a semantic graph database, is also capable of handling powerful semantic

queries and supports the use of inference services for uncovering new information out of the

existing relations.

3.6 Software Analytics Queries (Step #6)

There have been many works on creating software analytics tools or services to support

software analysis tasks [57-59]. However, their applicability is often limited for several reasons.

Firstly, these tools have remained information silos by relying on their own proprietary data

collection and data models. While these models work well for supporting tool-specific analytics

tasks, they limit their ability to share, reuse and integrate data and analysis results with other tools

and knowledge resources. Secondly, the underlying knowledge representations used by these

32 https://rdflib.readthedocs.io/

34

analysis approaches lack support for a seamless integration of new knowledge resources or the

ability to deal with incomplete data; and thirdly, the extensibility and flexibility of the analysis

support provided by existing tools is often limited by the underlying knowledge representation.

In our research, we take advantage of the Semantic Web and its technology stack (e.g.,

ontologies, reasoning services) and establish a unified knowledge graph representation to

model software vulnerability-related resources. Based on this knowledge graph, we can now

extend and integrate this knowledge with other (heterogeneous) resources to grant a more flexible

software analytics analysis approach. Users can either define their software analytics service

using SPARQL [23] which is a standard semantic query language to retrieve and manipulate data

stored in the RDF format or reuse already predefined queries.

3.7 Knowledge Graph evolution

The last step of our methodology is related to the evolution of the knowledge graph. This

is an iterative process within our ontology design that evolves as new vulnerability-related

resources become available and will be included in our knowledge model. With the inclusion of

new concepts and properties to the domain ontology to capture new vulnerability-related

dependencies and semantics, there is a possibility that existing domain concepts and properties

will be demoted to the lower layer. One of the key benefits of using ontologies is that they can

easily be extended, by adding new relationships and concepts and linking them to the existing

ontologies. As a result, our current ontologies will evolve as new knowledge becomes available,

however, given the native support of ontologies to support the extension to the knowledge base,

these changes will not impact our already existing queries or analysis services. Instead, it will

create new opportunities to introduce other novel analysis services and a further extended

knowledge base.

35

4A Knowledge Graph for Software
Vulnerability-Related Resources

In this chapter, we illustrate how our methodology (introduced in Chapter 0) can be applied

to establish a knowledge graph for the domain of known software vulnerabilities. More

specifically, we show how our methodology can be used to create a standardized and unified

representation of software vulnerability-related artifacts and knowledge resources, as is shown in

Figure 4-1. This unified knowledge representation will then form a base for the introduction of

novel software analytics services that can guide developers, maintainers, and security experts in

managing known vulnerabilities.

Figure 4-1: Overview picture of the actual process applied to vulnerabilities

Chapter 4

36

4.1 Selection of Software Vulnerability-Related Resources

As previously discussed, various repositories have been introduced to manage known

vulnerability information (e.g., NVD, CWE, bug bounty repositories). In addition, other resources

such as build and dependency management systems, source code repositories, or even more

general information resources (e.g., Wikipedia) can provide useful insights for security experts

and developers. While these knowledge resources might not capture directly known software

vulnerability information, they can, when integrated with VDBs, provide new insights. To

illustrate how our methodology can be applied to support the modeling of these knowledge

resources related to known software vulnerability, we select resources that provide different views

on software vulnerabilities. We then model these resources and integrate them as parts of our

software vulnerability knowledge graph.

Vulnerability Databases

 NVD is the most widely used VDB and collects vulnerability information from various

interrelated vulnerability databases like CVE, and CWE. Every entry in the NVD database is

identified by a unique identifier, a CVE ID, which is also used as a standard reference to NVD

vulnerabilities in other resources. A typical vulnerability entry in NVD consists of a vulnerability

identifier, a description of the vulnerability, a list of software and their versions in which this

vulnerability is found, and a vulnerability severity score (CVSS).

Other than NVD, we included Snyk [5] as a second example of a VDB, which allows us to

illustrate how our modeling approach can support and integrate domain knowledge from different

resources. The Snyk VDB captures and describes also known vulnerabilities using a CVE ID. In

addition, Synk provides services to scan, prioritize, and fix security vulnerabilities in source code.

We use the CVE-ID as our main property to link and integrate different VDBs.

37

Bounty platforms

Bug bounty programs have emerged as an integrated part of the secure software development

lifecycle to aid security teams in the release and maintenance phases. Among the many bounty

platforms introduced in the last decade, HackerOne was founded in 2013 and is one of the best-

known bounty platforms [43]. HackerOne includes two types of information: 1.) the program

definition where the organizer publishes bounty rules including policy, scope, reward, etc. 2.)

hacker activities (Hacktivity reports) that describe the bounty hunter activities and potential

vulnerability discovered by the hacker that needs to be evaluated by the organizer, as well as

information about the bounty hunter. Once a new vulnerability is discovered, it might be assigned

a CVE-ID.

Dependency Management tools

Dependency and build management tools [60, 61] are used to resolve and manage direct and

transitive system dependencies during the build process. Project dependencies can be found within

a project source code (e.g., GitHub), a build management system (e.g., Maven), or package

managers (e.g., NPM). To populate our ontology, we use another service called libraries.io33 that

monitors packages across 32 package managers while it provides an API to search and extract

dependencies of libraries monitored by the platform.

3rd Party Knowledge graphs or Linked data

One of the key benefits of knowledge graphs is the ability to integrate already existing knowledge

graphs or linked data resources, to allow users (e.g., humans or machines) to explore and infer new

knowledge across a set of combined knowledge resources. We illustrate this integration of already

existing linked data and knowledge graphs by linking our own knowledge graph with DBpedia,

which is the linked data representation of the Wikipedia portal. These third-party knowledge

33 https://libraries.io/

38

integrations facilitate establishing a direct link between the knowledge resources using shared

concepts or properties. DBpedia is a publicly available linked data resource that provides a

SPARQL query endpoint to access the knowledge graph, We also attempted to integrate with the

Google Knowledge Graph [33]. However, the Google Knowledge Graph uses a RESTful search

API, limiting the ability to fully integrate this knowledge graph semantically with other knowledge

graphs.

4.2 Establishing Initial System-Level Ontologies

In this section, we discuss the initial system-level ontologies, which we created as part of

our modeling approach. We established these initial system-level ontologies, by transforming the

extracted schemata into their corresponding ontology components, namely concepts, properties,

and relations. It should be noted that these initial system-level ontologies are neither optimized in

terms of their semantic expressiveness (reasoning support) nor for knowledge reuse and linking

across ontologies.

4.2.1 Vulnerability-Related Ontologies

The vulnerability resources for which we derived system-level ontologies are CWE, CPE,

and two VDBs (NVD and Snyk) which are explained as follows.

CWE

The CWE is a category system for hardware and software weaknesses and vulnerabilities which is

available on the Mitre website34. The downloaded file is an XML that holds all the metadata

available for weaknesses. At the time of writing, there are 947 weaknesses listed in CWE V4.6.

34 https://cwe.mitre.org/data/downloads.html

39

Figure 4-2: shows a sample CWE record with all the available properties used to describe

weaknesses.

Each CWE has several primitive attributes (e.g., name, date, status, etc.) that we store as a

data attribute as well as some relational attributes that link weaknesses to each other. For instance,

CWE-943 (Improper Neutralization of Special Elements in Data Query Logic) is a parent of CWE-

89 (SQL Injection), and CWE-89 is a parent of CWE-564 (SQL Injection: Hibernate). A query for

vulnerability with a weakness CWE-943 will now not only return vulnerabilities with CWE-943

but also vulnerabilities in all its subcategories CWE-89 and CWE-564.

Figure 4-2: CWE XML Schema (partial view).

40

Our CWE system-level ontology (shown in Figure 4-3:) is a direct mapping from the CWE XML
schema. In addition, we introduce two concepts which are subclasses of the General concept of
Software Weaknesses. The concept of CWE Attributes and its subclasses capture general
information related to the weakness (e.g., operating system, technology, languages). These CWE
Attributes are mostly derived from main concepts in other ontologies with their logics. We reuse
these concepts to primarily connect our ontology to the linked data and secondly, to use predefined
data in our ontology. The CWE concept uses CWE Attributes as object properties and holds
other attributes (e.g., submission date) as data properties.

Figure 4-3: CWE - System Level Ontology

Figure 4-4 shows a partial view of our populated CWE ontology and how it captures the

dependencies among CWEs. It should be noted that the relations (e.g., parentOf/childOf) are

inverse. Properties have a direction from domain to range. The owl:inverseOf construct can be

used to define a symmetric property.

41

Figure 4-4: A partial ABox view of the initial CWE system ontology

CPE

CPE represents a directory of projects and their versioning information. The directory was

introduced to eliminate ambiguity among project references.

Figure 4-5: A sample CPE record

42

Each CPE has a unique, standardized URI that can be de-referenced for later processing. The URI

combines 13 attributes, separated by a colon and consists of the following parts.

<standard>:<standardVersion>:<part>:<vendoe>:<product>:<version>:

<update>:<edition>:<language>:<software_edition>:<target_software>:

<target_hardware>:<other>

For our CPE system-level ontology, we model these attributes as properties and attributes of our

CPE class.

Figure 4-6: Initial CPE System Level Ontology

As shown in Figure 4-5: each CPE includes a list of references in addition to URI and titles.

These references are URIs to the product-related webpages, including in many cases the link to

the source code repository.

Figure 4-6: shows the corresponding CPE system level ontology, where the Software

Products concept captures the CPE title and the core CPE properties, as well as the detailed

reference to each CPE. It should be noted that in Figure 4-6: we omitted properties and attributes.

In the original CPE repository, many products have more than one URI due to having different

versions or environments in a component that might be deployed. To facilitate further processing,

we transform CPE information and extract a reference that is common for all different versions of

a single product. The software product will provide a standardized reference to the software

43

product, while the CPE instance, will include the CPE specific version information (Figure 4-6:).

Figure 4-7: shows a partial ABox view of the initial CPE system ontology.

Figure 4-7: A partial ABox view of the initial CPE system ontology

NVD

NVD is the most widely used publicly available VDB for known vulnerabilities. Figure 4-8 shows

a sample of NVD record. NVD uses CVE-ID to identify vulnerabilities (CVEs) and maintain a

reference to the original record by MITRE. MITRE Engenuity (or simply Engenuity) was launched

in 2019 "to collaborate with private sectors on solving industrywide problems with cyber defense"

in collaboration with corporate partners [62]. The foundation created the Center for Threat-

Informed Defense. In addition, each CVE includes a problem-type section that lists all weaknesses

from the CWE database that apply to this CVE. The reference property includes a list of external

web resources that contain additional information about the vulnerabilities. The configurations

property is used to match a vulnerability to a list of CPE records and a software product (including

the affected versions, platforms, and other product-specific attributes).

44

Figure 4-8: Partial view of the CVE Schema

45

For our initial system-level NVD ontology (shown in Figure 4-9), we map a subset of the

available NVD information that is required for our use cases. The modelled information includes

the following data properties: CVE-ID, publish date, and score, as well as object properties such

as CWEs, CPEs. The current ontology can easily be extended to include all NVD information.

Figure 4-9: NVD System Level Ontology

Figure 4-10 shows a partial ABox view of our populated NVD system-level ontology and

the information we capture in this ontology.

Figure 4-10: A partial ABox view of the initial CVE system ontology

46

Snyk

Snyk data schema is similar to the one use by NVD by including both CVE and CWE. Snyk

provides its own scoring system to classify and measure risk factors. Snyk does not offer an API

endpoint to fetch vulnerabilities. The extraction of vulnerability information in Synk is limited to

the portal website, by scraping the web pages. Figure 4-11 illustrates how the Snyk system level

ontology relates to other ontologies in our ontology hierarchy.

Figure 4-11: Snyk initial design

Figure 4-12 shows a partial ABox view of our populated SNYK system-level ontology and

the information it captures.

Figure 4-12: Snyk initial example

47

HackerOne

Bug bounty programs offer monetary rewards to ethical hackers (bounty hunters) for successfully

discovering and reporting a vulnerability or bug to an application’s developer. Figure 4-13: shows

a partial view of a sample record (using “Nextcloud”) that is available on the HackerOne portal.

Each record on HackerOne contains its status and some minimum reward information, as well as

general bounty descriptions that include the program being part of the bounty. The hacker activity

for a particular bounty is posted as HackerOne hacktivity reports, which contain the title, date,

status, and reporter. In the HackerOne model, we have one program entity and one hacktivity entity

to map to projects. We also model users who reported a potential vulnerability as bounty hunters

in this ontology.

Figure 4-13: A sample HackerOne record

48

HackerOne does not provide an official API for public access to its programs and to create

data dumps. The website35 therefore needs to be crawled to extract the reported vulnerability and

hacktivity information. The challenge with scraping the website is that the content provided for

each hacktivity report is not standardized, making it difficult to extract consistent data from each

report.

Figure 4-14: Bug bounty System-level ontology

The initial design of our system-level ontology for HackerOne is shown in Figure 4-14.

We face a few challenges when creating the initial HackerOne concept. While extracting some

information related to the bounty concept (policy, collection of hackers reports) was a

35 https://hackerone.com/

49

straightforward task, extracting the content of the Hacktivity reports is quite more difficult due to

their unstructured representation (e.g., specifying details of the vulnerable components/systems

such as versioning information). Also, there is no consistency in terms of the type of information

provided between Hacktivity reports. Therefore, we treat most of the descriptions found in a

Hacktivity report currently as a single text property.

4.2.2 Build Dependency Ontology

Libraries.io

Libraries.io36 is a service portal that indexes data from 5 million packages extracted from 32

package managers. The website monitors package releases, analyses each project's code,

community, distribution, and documentation and also maps relationships between packages when

they are declared as a dependency.

This type of dependency information is usually accessible through build management tools

(e.g., Maven), package managers (e.g., NPM), or source code repositories (e.g., GitHub). For the

build management ontology design, we reuse the build ontology introduced originally in [63],

which provides support for the modeling and integration of different build management systems.

For the data extraction process, instead of querying each build management system

separately, we used the libraries.io portal. Libraries.io is an open-source web service that lists

software development project dependencies. Figure 4-15 shows a partial record of the information

libraries.io provides for each individual product. The extracted information was then converted to

our graph schema for import (Figure 4-16). In addition, libraries.io also provides another API to

retrieve product dependencies.

36 https://libraries.io

50

Figure 4-15: Data extracted from library.io

51

Figure 4-16: A partial ABox view of the initial Libraries.io system ontology

Figure 4-17 shows an example of the dependencies that we extracted and modeled for the

sample library “deep-defaults”. For each project, we retrieve these transitive dependencies, with

the outgoing connections (edges) being dependencies and incoming connections (edges) being

dependents. It should be noted that for the dataset which we used in our case studies, we limited

the transitivity dependencies to 5 nesting levels.

Figure 4-17: Dependencies for “deep-defaults” library

52

4.3 Ontology Abstraction and Refinement

As discussed earlier, this thesis contributes by not only modeling individual knowledge

resources as ontologies, but also by integrating these ontologies in a unified representation

(knowledge graph). As a part of our modeling approach, we take the advantage of key premises of

SW which are its ability to share and extend the existing knowledge. The resulting unified

representation allows us to eliminate the information silos these resources have traditionally

remained in and turn them into information hubs. These information hubs enable applications and

analytics services to reuse and share their knowledge across individual repository boundaries.

In this section, we discuss in more detail, how we integrate our initial system-level

ontologies (Section 4.2). More specifically, we refine our system-level ontology designs to

facilitate their integration with the ontologies introduced by Alqahtani et al. [7]. They introduced

SEVONT, an abstraction hierarchy of ontologies covering various software artifacts, including

ontologies for software vulnerability databases [7]. SEVONT also proposes a unification model

for VDBs using linked data that facilitates also the reconciliation of VDBs. In what follows, we

discuss in more details, the modifications and optimization we made to our initial system ontology

designs, as well as changes to the SEVONT framework in order to integrate our ontologies. More

specifically, we not only extend these ontologies with additional system-level repositories (e.g.,

bounty resources) and non-specialized resources (e.g., DBpedia), but also refine the ontology

design to provide a knowledge graph that goes beyond the conceptualization of a domain of

discourse by focusing on the inference of new knowledge to support our use cases.

4.3.1 Abstraction Overview

For the modeling of abstractions, we followed the same bottom-up knowledge modeling

approach used in [43]. First, we modeled system-specific concepts (Section 4.2) which we now

evaluate and refine to determine if certain concepts can be promoted to higher-level shared

53

concepts that finally will be located in upper-level ontologies (Figure 4-18). This abstraction

mechanism allows not only for the reuse of concepts and properties across ontologies, but also

facilitates linking (shared concepts) of the ontologies. The resulting four-layer modeling hierarchy

is similar to a metadata modeling approach introduced by the Object Management Group

(OMG)37.

Figure 4-18: SEVONT Ontology Pyramid [65]

37 http://www.omg.org/

54

4.3.2 Design Details

In what follows, we discuss how each of these layers differs in terms of their purpose and

design rationale. The discussion is based on the original ontology abstraction hierarchy presented

in [64].

General Concept Layer

Classes in the top-layer model correspond to meta-meta level ontologies—core concepts shared

and extended by the lower modeling layers. Examples of such core concepts are Product,

Organization, Activity, Stakeholder, and Artifact. All concepts in this layer are

subclasses of the SeOn Thing class (a subclass of owl:Thing, which captures the set of all

individuals within our framework). Similarly, the datatype properties and object properties in this

layer are generic and shared across the abstraction layers. For example, the dependsOn object’s

property captures the generic relationship between things—one Product depends on another

Artifact.

Domain-Spanning Concepts

In this layer, concepts describe the knowledge that is typically inferred from two or more

ontologies. For example, the measurements ontology acts as a general linking mechanism between

ontologies. The ontology includes two basic concepts, BaseMeasure and DerivedMeasure.

Adequate BaseMeasure instances are the size and numberOfDependencies in a Product.

DerivedMeasure captures an aggregation of values from different subdomains. For example, the

DerivedMeasure class includes the numberOfVulnerabilitiesPerLibrary instance, which is

computed from measures collected from the source code, history, build system, and vulnerability

ontologies. SimilarityMeasure, which is a subclass of DerivedMeasure, captures the similarity

([0,1]) between any two SeonThing instances.

55

Domain-Specific Concepts

This layer in the knowledge model captures domain-specific aspects and concepts that are common

and reused across system-level resources in a particular domain (e.g., domain of dependency

management systems). At the core of the domain-specific layer, we have several domain

ontologies: (1) SEVONT, (2) Software Evolution Ontologies (SEON) [64], (3) Software Build

Systems Ontologies (SBSON), and (4) Bug bounty ontologies.

Our ontology includes the following important domain concepts:

• Vulnerability. In software security, a vulnerability refers to a flaw in the system that is

introduced by reusing vulnerable (external) software components or inadvertent coding

mistakes by developers (e.g., bad coding practices).

• Product. Software products are assets of organizations that are the results of a software

development process (e.g., hardware, artifacts).

• Attacker. Attackers, either internal or external entities of the system, attack a product to

perform malicious actions which attempt to break the security of a software system or its

components.

• Attack. Attacks are malicious actions designed to compromise the security of a system.

Security experts analyze these attacks to study the behavior of attackers, estimate the cost of

attacks and determine their impact on overall system security.

• Countermeasure. A countermeasure is a mechanism used to protect a system from potential

vulnerability attacks (e.g., patch development, encryption/decryption enhancement, and

updated system security configurations).

For example, security databases capture a Vulnerability that has an associated Event. An Event

often can be further divided into Action and Impact—an attacker exploits a Vulnerability to

produce an Action, which has an Impact.

56

System-Specific Concepts

The bottom layer defines concepts that are specific to a knowledge resource and not shared among

other ontologies. The system ontologies extend domain-specific concepts. For example, the system

ontology for NVD extends the general SEVONT ontology with a Severity concept, which is

specific to NVD and is not shared among other VDBs.

4.3.3 Extensions to the SEVONT Hierarchy

In what follows, we discuss the changes we made to our initial system-level ontologies to

support not only their integration in the existing SEVONT ontologies, but also improve knowledge

reuse and inference of new knowledge. As a part of our modeling process, we extend the layers of

the original ontology hierarchy by identifying and promoting newly shared concepts (introduced

by our system-level ontologies) to a higher abstraction layer. Our proposed model reduces concept

ambiguity and facilitates ontology alignment/matching by determining correspondences between

ontological concepts. The resulting linked ontologies form a foundation to support the introduction

of novel analytics services that can guide maintainers and developers in managing known software

vulnerabilities. An overview of our modified four-layered SEVONG ontology abstraction model

is shown in Figure 4-19 and is discussed as follows.

General Abstraction Layer

For the general abstraction layer, there are no changes to the original ontology design from [53]

since the provided general abstraction layer already covers the most basic core concepts. Our

system-level ontologies are all based on the extensions of these already modeled general concepts.

Domain Spanning Abstraction Layer

We extended the domain Spanning layer with an activity ontology consists of two concepts:

activity and reward. These two domain-spanning concepts are not limited to any domain

and can be reused across many areas. All bounty reports can be considered as results of some

57

activities made by stakeholders with a potential reward. In our context, they are used to capture

reports and efforts in the bug-bounty domain.

Figure 4-19: Four-layer ontology abstraction model

58

Domain-Specific Abstraction Layer

At the domain-specific layer, we added two domain-level ontologies:

(1) Bug Bounty ontology, and

(2) a wiki ontology.

These two domain ontologies, model the core concepts found in the Wiki and bug-bounty domain.

The wiki ontology is an abstract layer for any encyclopedia where a user might find relative

information about a subject. It includes the concept WikiPage and some core properties and

attributes. The bug-bounty ontology models the concepts shared among ontologies in the bug-

bounty domain (e.g., HackerOne or BugCrowd.). Bounty reports are quite common in bounty

domain and contain detailed descriptions of vulnerabilities that are disclosed to the program

handlers only and allow them to fix the issues before get published publicly. The report usually

contains steps to reproduce proof of concept and recommended solutions that leads to identify a

vulnerability. The domain ontology, therefore, includes two major concepts:

• Hacktivity is used to report on hacker activity. It also serves as a resource that enables

hackers to search for reports regarding programs and weaknesses and how these

weaknesses were exploited in various bounty programs.

• Status is a concept related to Hacktivity and is used to keep track of the status of

individual activities.

System-Specific Layer

At the System-Specific layer, the most concrete layer of our hierarchy, knowledge specific to a

particular knowledge resource is modeled. For example, SBSON [65] models the common

concepts found in the domain of build management systems. There are build system-specific

ontologies, like Maven, which extend the domain level SBSON to model information specific to

Maven.

59

Build Management Dependency Graph

Several build systems exist which provide the users access to both internal components and

external API dependencies. While their traditional unidirectional dependency models capture build

dependencies, they restrict users ability to further reason upon this knowledge. For example, using

the case of Maven, it is currently not possible for a user to identify all components or projects that

depend either directly or indirectly on a project (Figure 4-20).

Figure 4-20: Unidirectional vs. bi-directional dependencies. [63]

To overcome the previously discussed modeling challenges, we take the advantage of

SBSON ontology [63] to model the dependencies in the build systems and source code

repositories. SBSON extends the initial system-level ontology with support for a bi-directional

project dependency graph. This bi-directional graph allows us to not only query for all components

that a project is using (directly or indirectly), but also to identify which projects are directly or

indirectly using a certain component. For example, using the SBSON dependency model (Figure

4-20). We can extend now traditional dependency-based impact analysis on project C to not

60

include all components on which project C depends on (projects D and E), but also identify all

projects which might depend on project C - in this example, projects A, F, and G.

Given this ontology design, it is possible to have system-level ontologies that benefit from

these bidirectional links by being able to infer knowledge across knowledge resource boundaries.

For example, the system-level Library ontology (shown in Figure 4-21) extends the SBSON

ontology, which now allows the Library ontology to also take advantage of the bi-directional

dependency model captured in SBSON.

Figure 4-21: Maven Ontology Overview

In what follows. we discuss in more details, some of the design modifications we applied

to both our initial system-level ontologies (Section 4.2) and SEVONT.

Linking of Libararies.io with Software Product information (CPE.on)

A fundamental part of the vulnerability analysis process is to be able to uniquely identify products

affected by a given vulnerability. As a result of this analysis, we can now identify known issues

for any software product, as long as the associated product identifier is known. In our modeling

approach, both ontologies, libraries.io and CPE, have a concept repo_uri which refers to a

software product. We use this concept to link the libraries.io with the CPE ontology.

61

Figure 4-22. CPE-Library integration model

Linking of Weaknesses (CWE) with build dependencies (SBSON)

Based upon the requirements discussed in section 4.2.1 we use the same technique as the

Dependency Graph section to utilize the reasoning service and infer all possible weaknesses. In

the CWE ontology, we define properties (provided in Table 4-1) with OWL features. The inclusion

of these property types allows us to provide a knowledge model which is expressive enough to

allow for the inference and linking of knowledge across these two ontologies.

Type of property Type of reasoning supported

canAlsoBe Transitive
Symmetric

childOf Transitive
Inverse Of “parentOf”

parentOf Transitive
Inverse Of “childOf”

peerOf Transitive
Symmetric

Table 4-1: CWE reasoning details

62

Linking Bug Bounty information with known vulnerabilities databases

We enrich our system-level VDB knowledge graphs by linking them with CWE and bug bounty

ontologies. These links allow us to infer new knowledge which might not have been directly

accessible in the individual knowledge resources. The bug bounty repositories include

vulnerability-related information in the form of hacktivity reports covering potential

vulnerabilities. These vulnerabilities are disclosed by bounty hunters to the organization or vendor

who issued the bounty program. However, several inconsistencies can be observed in these reports:

1) When a hacktivity report is verified as describing a vulnerability, this vulnerability

might be either disclosed in a vulnerability database (which assigns a CVE-ID to

the vulnerability) or just reported locally on the bug bounty platform (without a

CVE-ID).

2) Even if a reported vulnerability has been assigned a CVE-ID in the VDB, the

corresponding hacktivity report might not be updated with the new CVE-ID.

Therefore, a vulnerability might be reported in a bounty program with or without a CVE-

ID, even if the vulnerability has been published in the VDB with a CVE-ID. As a result, using the

shared concept CVE-ID, while offering high link precision, the recall which can be achieved might

be quite low.

63

Figure 4-23: A partial ABox view of the initial HackerOne system ontology

Figure 4-23 shows an example of a vulnerability that is found in both NVD and HackerOne

for the NextCloud38 example. Figure 4-24 shows a diagram with a partial list of vulnerabilities

found for NextCloud and the resources each vulnerability is captured.

38 https://nextcloud.com/

64

Figure 4-24: Nextcloud reports in NVD and HackerOne

While NVD follows a standardized convention to specify applicable platforms using

structured naming scheme provided by CPE, HackerOne and other bug bounty platforms do not

necessarily adhere to this standardized name scheme for products and domains of

products/environments for which vulnerabilities have been reported. Due to these non-

standardized descriptions used by bounty platforms, the content and level of detail provided in

hacktivity reports can vary not only across bounty platforms, but also within the same bounty

platform. Due to these inconsistencies, links established between these ontologies using the

software product/environment or reporter name will be of low quality in terms of their recall and

precision.

Another issue related to data accuracy is the lack of versioning information in HackerOne.

Each vulnerability is applicable on a list of the application versions until a patch is introduced and

the vulnerability is resolved in one update. We attempted to mitigate this problem by using the

report date of a vulnerability submission to evaluate the threat rather than the vulnerable versions.

It should be noted that these links will be of lower quality. While recall might be acceptable for

these links, their precision might be low. This is since we no longer distinguish the specific version

65

of a product in which a vulnerability might have been reported and only consider the product

version closest to the hacktivity reporting date. The link quality could be further improved, by

including additional resources in the linking process, such as references made to hacktivity reports

in commit messages. Figure 4-25 shows a partial view of how different concepts are connected to

each other, while each can function independently through their own ontologies.

Figure 4-25: Nextcloud graph example

66

4.3.4 External Integrations – DBpedia

The DBpedia Knowledge Graph encompasses curated data from Wikipedia and allows for

the integration of Wikipedia data with other knowledge graphs using SPARQL. In our research,

this integration can take on two forms. 1) We can use DBpedia data to further enrich resources in

our ontologies, and 2) specify concepts through annotated text properties using DBpedia Spotlight

[66]. DBpedia Spotlight allows for the automatic annotating mentions of DBpedia resources in

text. This allows for linking unstructured information sources to the Linked Open Data cloud [67].

Figure 4-26 illustrates how we establish the link between DBpedia and CWE using the same-as

relationship to describe each CWE property.

Figure 4-26: Linking DBpedia to CWE.

67

4.3.5 Google Knowledge Graph

The most widely used approach to identify and access knowledge resources found on the

Internet are Search Engines. The Google Knowledge Graph is a knowledge base from which

Google serves relevant information beside its search results. This information allows users to see

answer in a glance. The data used by the Google Knowledge Graphs [68] is generated

automatically from a variety of sources, covering people, businesses, places and more. We tried

to integrate the Google knowledge graph with our own knowledge graph, however, we soon

realized that the Google Knowledge Graph is used internally by Google to enrich their search

results. Access to the Google KG is limited to a REST API, which accepts a few parameters as

query terms and returns the result as a list of ranked objects. While this traditional API is

commonly used for Web-based applications, this API does not permit a full integration of the

Google Knowledge Graph with our knowledge graph. More specifically, without exposing the

internal model of their KG nor providing a SPARQL endpoint, no semantic links between the

Google knowledge graph and our knowledge graphs can be established. As a result, we can not

seamlessly semantic inference can be inducted across resource boundaries. We were therefore

unable to directly integrate the Google knowledge graph with our knowledge graph.

68

5Use Cases
In this chapter, we illustrate how our modeling approach can support different types of

software analysis services (scenarios). More specifically, these analytic services are based on user-

defined queries that take advantage of both, our knowledge graph and SW inference services. For

the first analysis service example (Section 5.2), we integrate knowledge from build management

systems (e.g., Maven) with knowledge from vulnerability-related resources (e.g., HackerOne) to

identify potentially vulnerable system components that might be affected by a vulnerability

reported in a bounty program (HackerOne). For the second use case (Section 5.3), we use our KG

to analyze not only how many hacktivity reports a bounty hunter has submitted, but also the impact

of these detected vulnerabilities on a software ecosystem. For the third use case (Section 5.4), we

classify a bounty hunter’s expertise based on their hacktivity reports and use this information to

identify a bounty hunter’s main expertise areas. For the last use case (Section 5.5), we show how

our approach can be seamlessly integrated with other already existing knowledge graphs (e.g.,

DBpedia) to provide an enriched knowledge base.

5.1 Case Studies Setup

For our case studies' data collection and extraction, we rely on five real-world data sources:

NVD, Dependencies, HackerOne, Snyk, and CWE. For our study, we limited the dataset to projects for

Chapter 5

69

which we could identify the CVE-ID in both the bounty program reports and NVD. The extracted facts

are then populated in their corresponding ontologies making them persistent in our triple store.

Table 5-1 provides an overview of the dataset which we created and used to populate our

knowledge graph. The table shows the TBox (concepts and properties) of our ontologies. It should be

noted that the size of the serialized ABox in our triplestore is 203,390 explicit triples and 22,385,063

inferred.

Concept TBox size Description
CVE/NVD 841 A subset of NVD records with HackerOne or Snyk

reference
Snyk 391 A subset of Snyk records that are referenced in NVD
CWE 941 All records in CWE v4.4
CPE 239 A subset of CPE records for used products only
HackerOne
Reports

450 A subset of HackerOne records that are referenced in
NVD

HackerOne
Hackers

247 Number of Hackers for selected HackerOne Reports

Libraries 5908 A subset of used libraries with their dependencies

Table 5-1: Case studies environment.

5.2 Dependency graph vulnerabilities

As discussed earlier, while programmers are often unaware of components on which their

system indirectly depends on, these indirect dependencies still need to be considered a part of a

system’s attack surface and therefore closely monitored. In this case study, we illustrate how our

KG in combination with SW inference services can be used to identify vulnerable components

(Error! Reference source not found.). The analysis is based on a SPARQL query that identifies s

ystem components that might be directly or indirectly affected by a vulnerability reported in

HackerOne. More specifically, the analysis introduced in the case study considers both direct and

indirect build dependencies extracted from the dependency management system and combines this

70

information with CVE and CPE vulnerabilities to identify components for which a vulnerability

report in the bounty program (HackerOne) exists.

Figure 5-1: Dependency graph vulnerability overview

The project mikel/mail39 is a library for Ruby that is designed to handle email generation,

parsing, and sending. This repository has 3500 stars with 228 contributors and is used by 1.9

million repositories on GitHub only. The following example demonstrates recorded or inferred

vulnerabilities of this system, which has a total of 5 direct and 3402 indirect dependencies to other

components. It should be noted that while there are many indirect dependencies that are used in a

project, this does not necessarily mean the project has inherited a vulnerability from these

dependencies. Thus, this assertion can only be proved through a detailed analysis of the source

code, which is out of the scope of this thesis. In Figure 5-2 we presented a partial view of the

projects that our query scans for any potential vulnerabilities in mikel/mail (direct dependencies

are shown in solid lines, indirect dependencies are in dashed lines).

39 https://github.com/mikel/mail

71

Figure 5-2: Partial dependency graph for "mikel/mail "

The query shown in Figure 5-3 retrieves all HackerOne reports for any component

mikel/mail directly depends on. The results (in Error! Reference source not found.) show that o

nly one direct dependent component has a HackerOne report with a known vulnerability associated

with.

72

Figure 5-3: Direct bounty query for “mikel/mail” project

Figure 5-4: Direct bounty result for “mikel/mail” project

In what follows, we extend our previous analysis (Figure 5-3) to additionally include

indirect dependencies in the analysis. The refined query, shown in Figure 5-5, considers transitive

(indirect) dependencies by inferring the transitive properties captured within our KG. Including

both direct and indirect dependencies shows that there are only 19 additional indirect dependent

components (out of 3402) in the mikel/mail system that have vulnerabilities reported in

HackerOne. It should be noted that the dependency analysis provided by this query does not

consider the actual code usage of the component code. Therefore, our analysis may report that a

system is exposed to a vulnerable component, even if the vulnerable part of the component is not

used and therefore might not affect the system. A partial result of the transitive query for mikel/mail

is provided in Figure 5-6.

73

Figure 5-5: Transitive bounty query for “mikel/mail”

Figure 5-6: Partial result of the transitive query for “mikel/mail”

74

5.3 Impact of Bounty Hunters

In this case study, we illustrate how using our KG and a SPARQL query, one can identify

bounty hunters and the impact of the discovered vulnerabilities on global software ecosystem.

More specifically, in this analysis, we not only analyze how many hacktivity reports a bounty

hunter has submitted but also the potential impact of these detected vulnerabilities on the software

ecosystem. This information can be used to identify and rank bounty hunters based on the potential

impact of their work on global software community.

Figure 5-7: Direct contribution measurement query for “Rafal Janicki”

Figure 5-8: Direct contribution measurements result for “Rafal Janicki”

Figure 5-77 and Figure 5-8 show the query and its results for bug bounty hunter “Rafal

Janicki”, who has submitted a total of 6 bug bounty hacktivity reports. For this query, we only

consider the components that are directly dependent on the vulnerability. The query shown in

Figure 5-9 extends the analysis to include also components/projects that are directly or indirectly

75

dependent on the reported vulnerabilities. This extended analysis shows that a total of 1899

libraries (refer to Error! Reference source not found.) are potentially affected by the v

ulnerabilities reported by this bounty hunter. The query highlights the ability of our modeling

approach not only to integrate resources (by establishing links between the bug bounty program,

NVD and Maven), but also to infer new knowledge. More specifically, the query takes advantage

of the bi-directional links we established in our build management KG that allows us to infer a

global dependency graph (using the transitive dependencies). Furthermore, our analysis can be

easily extended to include additional bounty programs and/or build management systems.

Figure 5-9: Indirect contribution measurements query for “Rafal Janicki”

Figure 5-10: Indirect contribution measurements result for “Rafal Janicki”

76

5.4 Classification of Bounty Hunter’s Expertise

In this use case, we construct a query that classifies a bounty hunter’s expertise for a certain

type of vulnerabilities by combining the information from the CWE and the submitted hacktivity

reports by a bounty hunter. The weaknesses are derived from the CWE repository by connecting

the hacktivity reports to the CVE (NVD) and then to the CWE repository. This analysis could be

further extended to include also Common Attack Pattern Enumeration and Classification

(CAPEC), or other related vulnerability classification information. For instance, a bounty hunter

might have discovered vulnerabilities of type weakness "Improper Limitation of a Pathname to a

Restricted Directory ('Path Traversal')" more frequently than any other types of weaknesses. The

result of such a classification/ranking can be used to identify bounty hunters with expertise in

certain areas.

Figure 5-11: Expertise assessment query for “Rafal Janicki”

77

Figure 5-12: Expertise assessment result for “Rafal Janicki”

The query in Figure 5-11 retrieves all hacktivity reports published by Rafael Janicki on

HackerOne and then classifies these based on their reported vulnerability types, using information

from NVD and CWE. As the query results (Figure 5-122) show, the bounty hunter has mostly

worked on vulnerabilities of CWE types “22” (“Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')”) and “79” (Improper Neutralization of Input During Web Page

Generation (‘Cross-site Scripting’)) of a Pathname to a Restricted Directory ('Path Traversal').

5.5 Integration With External KGs

The following use case presents, how approach can be further enriched with knowledge

from external (third-party) knowledge graphs. The query in Figure 5-13 shows how one can create

a profile for a software product, in this example for Nextcloud. The query, firstly retrieves general

information (e.g., name, developer, logo, OS, product description) from DBpedia and secondly,

combines this with general information with knowledge extracted in our KG (hacktivity reports

and NVD information).

78

Figure 5-13: DBpedia integration query

The resulting profile includes a total of 111 facts, where 11 facts are extracted from the

external DBpedia KG (Figure 5-14) and the remaining facts are extracted from our KG (Figure

5-15).

79

Figure 5-14: A partial view DBpedia integration result - part 1

Figure 5-15: A partial view DBpedia integration result - part 2

80

6Related Work and Discussion
In this chapter, we discuss relevant to our work and how our contributions related to the

existing research.

6.1 Modeling known vulnerabilities with Ontologies

In what follows, we discuss the use of ontologies as a modeling language in the

cybersecurity domain. Cybersecurity is concerned with technologies, processes, and practices

designed to protect networks, computers, programs, and data from attacks, damages, or

unauthorized access [68]. More specifically, we focus on work related to the modeling known

vulnerabilities using ontologies. Undercoffer et al. [69] and [70] introduced an ontology for

intrusion detection systems. The proposed ontology was created based on the evaluation of 4000

vulnerabilities and the attack strategies used to exploit them. Their ontology was specified using

the DARPA Agent Markup Language (DAML) and prototyped using DAMLJessKB [71]. The

authors included several use case scenarios based on common attacks such as Denial of Service –

Sync Flood, the Classic Mitnick Type Attack, and Buffer Overflow Attack.

In More et al. [72], a situation-aware intrusion detection model was presented that

integrates system security data sources (e.g., network logs) to create a semantically rich knowledge

base for the detection of cyber threats/vulnerabilities. The authors collected data streams from the

network monitors, host monitors, sensor data, and other Intrusion Detection Systems (IDS)

Chapter 6

81

modules, which are asserted as facts in their knowledge base (introduced by [69] and [70]). For

intrusion detection, the authors take the advantage of SW reasoning services to infer whether there

is an indication of an attack.

Joshi et al. [73] extracted cybersecurity-related entities, concepts, and relations in their

work, and captured them in their IDS ontology (introduced by [69] and [70], and further enhanced

by [72]). As a part of their approach, the authors also mapped these concepts to the objects in the

DBpedia knowledge base using DBpedia Spotlight [67]. The approach creates an RDF-linked data

representation of cybersecurity concepts and vulnerability descriptions. The security information

is extracted from both structured vulnerability databases and unstructured text. Their approach

supports vulnerability identification and vulnerability mitigation efforts.

Sartabanova et al. [74] proposed an ontology for CWE and software architecture. The

authors used Protégé to model the weakness structure and design their ontology. In an effort by

Iannacone et al. [75], the existing cybersecurity ontologies from [69], [70], and [76] were extended

to introduce an ontology framework that incorporates additional information from a variety of

structured and unstructured data sources. In the study of Kamongi et al. [77], the authors introduced

VULCAN, a vulnerability assessment framework for cloud computing systems. The framework

consists of two main components: an Ontological Vulnerability Assessment introduced by [78]

and an Ontology Vulnerability Database [79] component. These two components provide access

to known vulnerability information that has been published by NVD. For the vulnerability

assessment, their approach benefits from advanced reasoning capabilities to support a semantic

search for vulnerabilities.

Like most of the related research on modeling vulnerabilities with ontologies, our research

describes vulnerability information. We reuse existing ontologies [10] and extend these already

available ontologies with new vulnerability information (concepts), as well as introduce new

ontologies that capture knowledge specific to the bug bounty domain. None of the existing research

has included the domain of bounty programs in its models.

82

6.2 Knowledge Integration

Very little research work exists that discusses the integration of vulnerability-related

knowledge with other software artifacts using ontologies. The closest work related to ours is the

work by Alqahtani et al. [65] who introduced SEVONT, a unified ontology for modeling software

vulnerabilities. SEVONT introduces a multi-layer knowledge model which not only provides a

unified knowledge representation, but also captures software vulnerability information at different

abstract levels to allow seamless integration, analysis, and reuse of the modeled knowledge.

Furthermore, Eghan et al. [80] developed a new ontology to link bi-directional dependencies in

Maven using OWL reasoning service which was also integrated with [52]. Syed et al. [76],

introduced Unified Cybersecurity Ontology (UCO) to support information integration and cyber

situational awareness. The ontology integrates data and knowledge schema from both

cybersecurity systems and commonly used cybersecurity standards to allow for data exchange

among these resources. The UCO ontology has also been mapped to a number of other existing

cybersecurity ontologies ([69] and [70]) and resources on the Linked Open Data cloud ([72] and

[73]). As part of their work, the authors presented a unified representation model for several

vulnerability databases to facilitate data retrievals from different data sources.

Our ontology is based on SEVONT, however, we contributed by extending the framework

and including ontologies related to the bug bounty domain. The resulting unified representation of

software artifacts related to known software vulnerabilities provides the foundation for novel

software analytics services which include the use of information captured in bounty programs.

83

6.3 Ontology-based Analytics tools that support Vulnerability

Analysis

In the research domain of ontology-based analytics tools, Gyrard et al. [81] and [82]

contributed by introducing an ontology-based Security Toolbox for Attack and Countermeasure

(STAC). STAC guides software developers in selecting the appropriate security mechanisms to

secure Internet of Things (IoT) applications (more specifically, securing ETSI Machine to Machine

[M2M] architecture). Moreover, Durai et al. [83] proposed an ontology (SQLIO) that can be used

to prevent and detect SQL Injection Attacks (SQLIA). The objective of the methodology is to

prevent and detect SQLIA web vulnerabilities in cloud environments. Zhang et al. [84] conducted

an empirical study about applying data-mining techniques on NVD data with the objective of

predicting the time for the occurrence of a new vulnerability in a given software application. They

experimented with different features extracted from the information available in NVD and applied

various machine-learning algorithms to examine the predictive power of the data and features.

Their results show that the data in NVD generally have mostly poor prediction capability, except

for a few vendors and software applications.

Like other existing research, we do provide software analytics support to manage known

software vulnerabilities. However, our approach differs from existing approaches, by taking

advantage of SW inference services to include knowledge from the bug bounty domain. This

additional knowledge can provide developers with new insights on the impact and management of

vulnerabilities. We furthermore illustrate how more generic knowledge resources such as DBpedia

can be included to further enrich our vulnerability analysis results.

84

7Conclusions and Future Work
In this thesis, we introduce a knowledge graph that takes advantage of the SW and its

technology stack to leverage and integrate knowledge resources related to known software

vulnerabilities. More specifically, we utilized knowledge graphs to provide a unified

representation that allows us to transform heterogeneous information silos (e.g., VDBs, bug bounty

programs, build systems, and source code repositories) into information hubs. We introduced a

methodology to depict the major steps involved in identifying, modeling, and integrating

knowledge resources to form such a knowledge graph. We then illustrated how our methodology

can be applied to create a knowledge graph for resources related to known software vulnerabilities.

For our knowledge modeling approach, we reuse existing ontologies (e.g., SEVONT, SBSON)

and enrich the knowledge graph with new resources (e.g., bounty programs, DBpedia). This

enriched knowledge graph serves an information hub that enables us to infer knowledge not only

within but also across knowledge resource boundaries. We introduce novel software security

analytics services that take advantage of our unified knowledge representation.

At last, we illustrate the applicability of our approach through several case studies, which

include real-world data sources such as: NVD-CVE, Maven, HackerOne, Snyk, and CWE.

Chapter 7

85

There are also several possible directions for future work:

Tool development. One potential avenue for future work is the integration of our knowledge graph

within an IDE. More specifically, one could envision taking advantage of a programmer’s current

task context in the IDE (e.g., current source code being edited) to provide context-specific analytics

services.

Improve ontology linking. While we rely on the exact concept and property matching (e.g., CVE-

IDs) techniques to link ontologies, this limits the number of instances that we can link. Moreover,

lack of investigating the actual usage of vulnerable code increased the number of project

dependencies exponentially. Additional semantic linking techniques could be applied to improve

recall while linking our ontologies.

Integrating additional resources

Another future direction would be to integrate other software-related knowledge resources, such

as StackOverflow40, to further enrich our knowledge graph.

40 https://stackoverflow.com/

86

8References
[1] K. R. van Wyk and G. McGraw, "Bridging the gap between software development and

information security," IEEE Security & Privacy, vol. 3, no. 5, pp. 75-79, 2005.

[2] A. L. Mesquida and A. Mas, "Implementing information security best practices on
software lifecycle processes: The ISO/IEC 15504 Security Extension," Computers &
Security, vol. 48, pp. 19-34, 2015.

[3] T. Walshe and A. Simpson, "An Empirical Study of Bug Bounty Programs," in IBF 2020 -
Proceedings of the 2020 IEEE 2nd International Workshop on Intelligent Bug Fixing, 2020,
doi: 10.1109/IBF50092.2020.9034828.

[4] H. Booth, D. Rike, and G. A. Witte, "The national vulnerability database (nvd): Overview,"
in ITL BULLETIN FOR DECEMBER 2013, ed, 2013.

[5] DeveloperSteve, "Using the Snyk Vulnerability Database to find projects for The Big Fix,"
vol. July, 2022, ed. Snyk.io: Snyk.io, 2022.

[6] C. Theisen, N. Munaiah, M. Al-Zyoud, J. C. Carver, A. Meneely, and L. Williams, "Attack
surface definitions: A systematic literature review," Information and Software
Technology, vol. 104, pp. 94-103, 2018.

[7] S. S. Alqahtani, E. E. Eghan, and J. Rilling, "Tracing known security vulnerabilities in
software repositories–A Semantic Web enabled modeling approach," Science of
Computer Programming, vol. 121, pp. 153-175, 2016.

[8] V. Lenarduzzi, A. Sillitti, and D. Taibi, "A survey on code analysis tools for software
maintenance prediction," in International Conference in Software Engineering for Defence
Applications, 2018: Springer, pp. 165-175.

[9] K. Goseva-Popstojanova and A. Perhinschi, "On the capability of static code analysis to
detect security vulnerabilities," Information and Software Technology, vol. 68, pp. 18-33,
2015.

[10] S. S. Alqahtani, E. E. Eghan, and J. Rilling, "SV-AF—a security vulnerability analysis
framework," in 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), 2016: IEEE, pp. 219-229.

87

[11] E. E. Eghan and J. Rilling, "A Semantic Web-Enabled Approach for Dependency
Management," International Journal of Software Engineering and Knowledge
Engineering, vol. 32, no. 09, pp. 1307-1343, 2022.

[12] J. R. David Uberti, Catherine Stupp. "The Log4j Vulnerability: Millions of Attempts Made
Per Hour to Exploit Software Flaw." Wall street journal.
https://www.wsj.com/articles/what-is-the-log4j-vulnerability-11639446180 (accessed
May, 2022.

[13] P. Paganini. "Quebec shuts down thousands of sites as disclosure of the Log4Shell flaw."
https://securityaffairs.co/wordpress/125556/hacking/quebec-shut-down-sites-
log4shell.html (accessed May, 2022.

[14] C. Sharma, "Tragedy of the Digital Commons," North Carolina Law Review, Forthcoming,
p. 82, August , 2022.

[15] L. Tal. "The Log4j vulnerability and its impact on software supply chain security." Snyk.
https://snyk.io/blog/log4j-vulnerability-software-supply-chain-security-log4shell/
(accessed June, 2022.

[16] T. Berners-Lee, J. Hendler, and O. Lassila, "The semantic web," Scientific american, vol.
284, no. 5, pp. 34-43, 2001.

[17] T. R. Gruber, "A translation approach to portable ontology specifications," Knowledge
acquisition, vol. 5, no. 2, pp. 199-220, 1993.

[18] S. Staab and R. Studer, Handbook on ontologies. Springer Science & Business Media, 2010.

[19] R. Laurini, "Pre-consensus ontologies and urban databases," in Ontologies for Urban
Development: Springer, 2007, pp. 27-36.

[20] "OWL 2 Web Ontology Language Document Overview (Second Edition)." W3C.
https://www.w3.org/TR/owl2-overview/ (accessed March, 2022.

[21] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and D. Nardi, The description
logic handbook: Theory, implementation and applications. Cambridge university press,
2003.

[22] V. Gezer and S. Bergweiler, "Service and Workflow Engineering based on Semantic Web
Technologies," The Tenth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies. International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies (UBICOMM-16), located at Tenth
International Conference on M, no. October, 2016.

https://www.wsj.com/articles/what-is-the-log4j-vulnerability-11639446180
https://securityaffairs.co/wordpress/125556/hacking/quebec-shut-down-sites-log4shell.html
https://securityaffairs.co/wordpress/125556/hacking/quebec-shut-down-sites-log4shell.html
https://snyk.io/blog/log4j-vulnerability-software-supply-chain-security-log4shell/
https://www.w3.org/TR/owl2-overview/

88

[23] "SPARQL Query Language for RDF." W3C. https://www.w3.org/2001/sw/wiki/SPARQL
(accessed March, 2022.

[24] V. G. Castellana et al., "Scaling RDF Triple Stores in Size and Performance. Modeling
SPARQL Queries as Graph Homomorphism Routines," in Handbook of Statistics, vol. 33,
2015.

[25] A. Blumauer, The Knowledge Graph Cookbook. Recipes that Work (Twist). 2020.

[26] X. Chen, S. Jia, and Y. Xiang, "A review: Knowledge reasoning over knowledge graph,"
Expert Systems with Applications, vol. 141, p. 112948, 2020/03/01/ 2020, doi:
https://doi.org/10.1016/j.eswa.2019.112948.

[27] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, "A survey on knowledge graphs:
Representation, acquisition, and applications," IEEE Transactions on Neural Networks and
Learning Systems, vol. 33, no. 2, pp. 494-514, 2021.

[28] Q. Wang, Z. Mao, B. Wang, and L. Guo, "Knowledge graph embedding: A survey of
approaches and applications," IEEE Transactions on Knowledge and Data Engineering, vol.
29, no. 12, pp. 2724-2743, 2017.

[29] T. Berners-Lee. "Linked Data - Design Issues." W3C.
https://www.w3.org/DesignIssues/LinkedData (accessed May, 2022.

[30] C. Bizer, T. Heath, and T. Berners-Lee, "Linked Data: The Story so Far," in Semantic
Services, Interoperability and Web Applications: Emerging Concepts, A. Sheth Ed. Hershey,
PA, USA: IGI Global, 2011, pp. 205-227.

[31] L. Ehrlinger and W. Wöß, "Towards a definition of knowledge graphs," in CEUR Workshop
Proceedings, 2016, vol. 1695.

[32] "Announcement: DBpedia Snapshot 2021-06 Release," in DBpedia Blog vol. 2022, ed:
dbpedia, 2021.

[33] A. Singhal. "Introducing the Knowledge Graph: things, not strings." Google.
https://blog.google/products/search/introducing-knowledge-graph-things-not/
(accessed March, 2022.

[34] J. Holze. "DBpedia Global: Data Beyond Wikipedia." dbpedia.org.
https://www.dbpedia.org/blog/dbpedia-global/ (accessed July, 2022.

https://www.w3.org/2001/sw/wiki/SPARQL
https://doi.org/10.1016/j.eswa.2019.112948
https://www.w3.org/DesignIssues/LinkedData
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.dbpedia.org/blog/dbpedia-global/

89

[35] M. Sharma and P. Soni, "Quantitative Analysis and Implementation of Relational and
Graph Database Technologies," International Journal of Modern Computer Science and
Applications (IJMCSA) ISSN, pp. 2321-2632, 2014.

[36] T. Nafees, N. Coull, I. Ferguson, and A. Sampson, "Vulnerability anti-patterns: a timeless
way to capture poor software practices (vulnerabilities)," in 24th Conference on Pattern
Languages of Programs, 2018: The Hillside Group, p. 23.

[37] W. N. Robinson, S. D. Pawlowski, and V. Volkov, "Requirements interaction
management," ACM Comput. Surv., vol. 35, no. 2, pp. 132–190, 2003, doi:
10.1145/857076.857079.

[38] M. Isaac and S. Frenkel. "Facebook Security Breach Exposes Accounts of 50 Million Users."
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
(accessed June, 2022.

[39] W. Wang, F. Dumont, N. Niu, and G. Horton, "Detecting Software Security Vulnerabilities
Via Requirements Dependency Analysis," IEEE Transactions on Software Engineering, vol.
48, no. 5, pp. 1665-1675, 2022, doi: 10.1109/TSE.2020.3030745.

[40] A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mohaisen, "Cleaning the NVD:
Comprehensive quality assessment, improvements, and analyses," IEEE Transactions on
Dependable and Secure Computing, 2021.

[41] H. Fryer and E. Simperl, "Web science challenges in researching bug bounties," in WebSci
2017 - Proceedings of the 2017 ACM Web Science Conference, 2017, doi:
10.1145/3091478.3091517.

[42] "Hackers Earn Record-Breaking $100 Million on HackerOne." HackerOne.
https://www.hackerone.com/press-release/hackers-earn-record-breaking-100-million-
hackerone-0 (accessed June, 2022.

[43] K. Sridhar and M. Ng, "Hacking for good: Leveraging HackerOne data to develop an
economic model of Bug Bounties," Journal of Cybersecurity, vol. 7, no. 1, p. tyab007, 2021.

[44] "Gartner’s Top 25 Enterprise Software Startups To Watch In 2020." Forbes.
https://www.forbes.com/sites/louiscolumbus/2020/07/05/gartners-top-25-enterprise-
software-startups-to-watch-in-2020/?sh=5bab476d7822#486868977822 (accessed June,
2022.

[45] M. Linares-Vásquez, C. McMillan, D. Poshyvanyk, and M. Grechanik, "On using machine
learning to automatically classify software applications into domain categories," Empirical
Software Engineering, vol. 19, no. 3, pp. 582-618, 2014.

https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.hackerone.com/press-release/hackers-earn-record-breaking-100-million-hackerone-0
https://www.hackerone.com/press-release/hackers-earn-record-breaking-100-million-hackerone-0
https://www.forbes.com/sites/louiscolumbus/2020/07/05/gartners-top-25-enterprise-software-startups-to-watch-in-2020/?sh=5bab476d7822#486868977822
https://www.forbes.com/sites/louiscolumbus/2020/07/05/gartners-top-25-enterprise-software-startups-to-watch-in-2020/?sh=5bab476d7822#486868977822

90

[46] O. Meqdadi, N. Alhindawi, J. Alsakran, A. Saifan, and H. Migdadi, "Mining software
repositories for adaptive change commits using machine learning techniques,"
Information and Software Technology, vol. 109, pp. 80-91, 2019.

[47] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, "On integrating orthogonal
information retrieval methods to improve traceability recovery," in 2011 27th IEEE
International Conference on Software Maintenance (ICSM), 2011: IEEE, pp. 133-142.

[48] N. Nazar, Y. Hu, and H. Jiang, "Summarizing software artifacts: A literature review,"
Journal of Computer Science and Technology, vol. 31, no. 5, pp. 883-909, 2016.

[49] S. Gupta and S. Gupta, "Summarization of software artifacts: a review," International
Journal of Computer Science & Information Technology (IJCSIT) Vol, vol. 9, 2017.

[50] J. Zhang, R. Xie, W. Ye, Y. Zhang, and S. Zhang, "Exploiting code knowledge graph for bug
localization via bi-directional attention," in Proceedings of the 28th International
Conference on Program Comprehension, 2020, pp. 219-229.

[51] R. Xie et al., "Deeplink: A code knowledge graph based deep learning approach for issue-
commit link recovery," in 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2019: IEEE, pp. 434-444.

[52] M. A. Musen, "The protégé project: a look back and a look forward," AI matters, vol. 1,
no. 4, pp. 4-12, 2015.

[53] R. V. Guha, D. Brickley, and S. Macbeth, "Schema. org: evolution of structured data on the
web," Communications of the ACM, vol. 59, no. 2, pp. 44-51, 2016.

[54] N. F. Noy and D. L. McGuinness, "Ontology development 101: A guide to creating your
first ontology," ed: Stanford knowledge systems laboratory technical report KSL-01-05
and …, 2001.

[55] P. E. Van Der Vet and N. J. Mars, "Bottom-up construction of ontologies," IEEE
Transactions on Knowledge and data Engineering, vol. 10, no. 4, pp. 513-526, 1998.

[56] V. Alves et al., "An exploratory study of information retrieval techniques in domain
analysis," in 2008 12th International Software Product Line Conference, 2008: IEEE, pp.
67-76.

[57] H. Kagdi, M. L. Collard, and J. I. Maletic, "A survey and taxonomy of approaches for mining
software repositories in the context of software evolution," Journal of software
maintenance and evolution: Research and practice, vol. 19, no. 2, pp. 77-131, 2007.

91

[58] K. K. Chaturvedi, V. Sing, and P. Singh, "Tools in mining software repositories," in 2013
13th International Conference on Computational Science and Its Applications, 2013: IEEE,
pp. 89-98.

[59] T. Siddiqui and A. Ahmad, "Data mining tools and techniques for mining software
repositories: A systematic review," Big Data Analytics, pp. 717-726, 2018.

[60] J. Hejderup, A. van Deursen, and G. Gousios, "Software ecosystem call graph for
dependency management," in 2018 IEEE/ACM 40th International Conference on Software
Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER), 2018: IEEE, pp.
101-104.

[61] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, "Structure and evolution of package
dependency networks," in 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), 2017: IEEE, pp. 102-112.

[62] "Mitre taps corporate partners to start up foundation focused on cyber defense," in
Washington Business Journal vol. 2022, ed. https://www.bizjournals.com: Business
Journal, 2019.

[63] E. E. Eghan, S. S. Alqahtani, C. Forbes, and J. Rilling, "API trustworthiness: an ontological
approach for software library adoption," Software Quality Journal, vol. 27, no. 3, pp. 969-
1014, 2019.

[64] M. Würsch, G. Ghezzi, M. Hert, G. Reif, and H. C. Gall, "SEON: A pyramid of ontologies for
software evolution and its applications," Computing, vol. 94, no. 11, 2012, doi:
10.1007/s00607-012-0204-1.

[65] S. Alqahtani, "Enhancing Trust –A Unified Meta-Model for Software Security Vulnerability
Analysis," ed. Montreal, 2018, pp. undefined-228.

[66] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, "Improving efficiency and accuracy in
multilingual entity extraction," in Proceedings of the 9th international conference on
semantic systems, 2013, pp. 121-124.

[67] P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer, "DBpedia spotlight: shedding light
on the web of documents," presented at the Proceedings of the 7th International
Conference on Semantic Systems, Graz, Austria, 2011. [Online]. Available:
https://doi.org/10.1145/2063518.2063519.

[68] P. W. Singer and A. Friedman, Cybersecurity: What everyone needs to know. oup usa,
2014.

https://www.bizjournals.com/
https://doi.org/10.1145/2063518.2063519

92

[69] J. Undercofer, A. Joshi, T. Finin, and J. Pinkston, "A target-centric ontology for intrusion
detection," in Workshop on Ontologies in Distributed Systems, held at The 18th
International Joint Conference on Artificial Intelligence, 2003.

[70] J. Undercoffer, A. Joshi, and J. Pinkston, "Modeling computer attacks: An ontology for
intrusion detection," in International Workshop on Recent Advances in Intrusion
Detection, 2003: Springer, pp. 113-135.

[71] J. B. Kopena and W. C. Regli, "DAMLJessKB: A tool for reasoning with the Semantic Web,"
in International Semantic Web Conference, 2003: Springer, pp. 628-643.

[72] S. More, M. Matthews, A. Joshi, and T. Finin, "A knowledge-based approach to intrusion
detection modeling," in 2012 IEEE Symposium on Security and Privacy Workshops, 2012:
IEEE, pp. 75-81.

[73] A. Joshi, R. Lal, T. Finin, and A. Joshi, "Extracting cybersecurity related linked data from
text," in 2013 IEEE Seventh International Conference on Semantic Computing, 2013: IEEE,
pp. 252-259.

[74] Z. Sartabanova, S. Sarsimbaeva, G. Urdabayeva, and V. Dimitrov, "Building an Ontology
for CWE from the Point of View of Architectural Concept," in CEUR Workshop Proceedings,
2021, pp. 352-358.

[75] M. Iannacone et al., "Developing an ontology for cyber security knowledge graphs," in
Proceedings of the 10th Annual Cyber and Information Security Research Conference,
2015, pp. 1-4.

[76] Z. Syed, A. Padia, T. Finin, L. Mathews, and A. Joshi, "UCO: A unified cybersecurity
ontology," in Workshops at the thirtieth AAAI conference on artificial intelligence, 2016.

[77] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal, "Vulcan:
Vulnerability assessment framework for cloud computing," in 2013 IEEE 7th International
Conference on Software Security and Reliability, 2013: IEEE, pp. 218-226.

[78] A. Steele, "Ontological vulnerability assessment," in International Conference on Web
Information Systems Engineering, 2008: Springer, pp. 24-35.

[79] S. Kotikela, K. Kavi, and M. Gomathisankaran, "Vulnerability assessment in cloud
computing," in Proceedings of the International Conference on Security and Management
(SAM), 2012: The Steering Committee of The World Congress in Computer Science,
Computer …, p. 1.

93

[80] E. E. Eghan, "Dependency Management 2.0–A Semantic Web Enabled Approach,"
Concordia University, 2019.

[81] A. Gyrard, C. Bonnet, and K. Boudaoud, "An ontology-based approach for helping to
secure the etsi machine-to-machine architecture," in 2014 IEEE International Conference
on Internet of Things (iThings), and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), 2014: IEEE, pp. 109-
116.

[82] A. Gyrard, C. Bonnet, and K. Boudaoud, "The stac (security toolbox: attacks &
countermeasures) ontology," in Proceedings of the 22nd International Conference on
World Wide Web, 2013, pp. 165-166.

[83] K. N. Durai, R. Subha, and A. Haldorai, "A Novel Method to Detect and Prevent SQLIA Using
Ontology to Cloud Web Security," Wireless Personal Communications, vol. 117, no. 4, pp.
2995-3014, 2021.

[84] S. Zhang, X. Ou, and D. Caragea, "Predicting cyber risks through national vulnerability
database," Information Security Journal: A Global Perspective, vol. 24, no. 4-6, pp. 194-
206, 2015.

94

Appendix A: NVD Properties

Vulnerability Specification:
Property Description
id Unique identifier for every reported vulnerability
assigner The assigner organization
problemtype List of problems based on CWE
references Report reference (e.g. HackerOne)
description Description of vulnerability
configuration Product configuration (e.g. versioning) which the vulnerability applies
impact Impact score based on different metrics (e.g. CVVS3)
publishDate Initial publish date
lastModifiedDate Date of last modification

Table 0-1: Vulnerability Specification

CWE Specification:
Property Description
id Unique identifier for weakness
name Title of weakness
description Full description of weakness
related Relationships between different weaknesses (e.g., ChildOf)
applicablePlatforms Vulnerable platforms to this weakness
modesOfIntroduction Level of vulnerability
commonConsequences Common consequences of exploit
likelihoodOfExploit How likelihood is to be exposed
potentialMitigation Mitigation steps to prevent exploit

Table 0-2: CWE Specification

CPE Specification:
Property Description
deprecated Is product deprecated?
cpeUri Unique identifier of exact product and release information
lastModifiedDate Date of last modification
titles Product title in multiple languages
refs Product reference links
vulnerabilities Known vulnerabilities for the product

Table 0-3: CPE Specification

95

Appendix B: HackerOne Properties

Bounty Program Specification:
Property Description
url Program page info on HackerOne website
name Project/Company name
about A short description of project/company
stripped_policy Company policy
disclosure_url Where users can report their activity
offers_reward If the program offers any reward
offers_thanks If the program offers any thanks

Table 0-1: Bug Bounty Specification

Bounty Report Specification:
Property Description
reporter The hacker who reported
state Report current state
disclosion_date The date of disclosion the vulnerability
weakness Exposed weaknesses
cve The issued cve as result of the activity
severity Severity score
bounty Amount of bounty paid to the hacker

Table 0-2: Bounty Report Specification

Bounty Hunter Specification:

Property Description
name User provided full name
hackerOneId User id in HackerOne
joinedAt Date of HackerOne sign up
username HackerOne username
workplaceHomePage User description page

Table 0-3: Bounty Hunter Specification

96

Appendix C: Libraries.io Properties
Library Specification:

Property Description
name Project name
dependentReposCount Number of dependent repositories
deprecationReason Is it deprecated or not and why
description A project description
forks Number of forks of the repo
homepage Project homepage URL
keywords Project keywords
language The main programming language
latestDownloadUrl Latest URL of built project
latestReleaseNumber Latest release version number
latestReleasePublishedAt Latest release date
latestStableReleaseNumber Latest stable release version number
latestStableReleasePublishedAt Latest stable release date
license Project license
packageManagerUrl Package manager URL
stars Number of repository stars
dependencies List of project dependencies

Table 0-1: Library Specification

	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1
	1 Introduction
	1.1 Motivation
	1.1.1 Research Objectives

	1.2 Motivating Example
	1.3 Contributions

	Chapter 2
	2 Background
	2.1 The Semantic Web
	2.2 The Semantic Web and its Technology Stack
	2.2.1 Description Logic
	2.2.2 The Resource Description Framework (RDF)
	2.2.3 SPARQL

	2.3 Knowledge Graphs
	2.3.1 Knowledge Graph vs Linked Data
	2.3.2 Examples of Big Knowledge Graphs
	2.3.3 Graph Databases versus Relational Databases

	2.4 Vulnerability Databases and Repositories
	2.5 Bug Bounty Programs
	2.5.1 Bug Bounty platforms

	Chapter 3
	3 A Methodology to Establish a Knowledge Graph for Software Artifacts
	3.1 Selection and acquisition of knowledge resources (Step #1)
	3.2 Schema Extraction and Ontology Design (Step #2)
	3.3 Data Extraction (Step #3)
	3.4 Data Pre-processing (Step #4)
	3.5 Knowledge graph population (Step #5)
	3.6 Software Analytics Queries (Step #6)
	3.7 Knowledge Graph evolution

	Chapter 4
	4 A Knowledge Graph for Software Vulnerability-Related Resources
	4.1 Selection of Software Vulnerability-Related Resources
	4.2 Establishing Initial System-Level Ontologies
	4.2.1 Vulnerability-Related Ontologies
	4.2.2 Build Dependency Ontology

	4.3 Ontology Abstraction and Refinement
	4.3.1 Abstraction Overview
	4.3.2 Design Details
	4.3.3 Extensions to the SEVONT Hierarchy
	4.3.4 External Integrations – DBpedia
	4.3.5 Google Knowledge Graph

	Chapter 5
	5 Use Cases
	5.1 Case Studies Setup
	5.2 Dependency graph vulnerabilities
	5.3 Impact of Bounty Hunters
	5.4 Classification of Bounty Hunter’s Expertise
	5.5 Integration With External KGs

	Chapter 6
	6 Related Work and Discussion
	6.1 Modeling known vulnerabilities with Ontologies
	6.2 Knowledge Integration
	6.3 Ontology-based Analytics tools that support Vulnerability Analysis

	Chapter 7
	7 Conclusions and Future Work
	8 References
	Appendix A: NVD Properties
	Appendix B: HackerOne Properties
	Appendix C: Libraries.io Properties

