4 research outputs found

    Reliability of Spectrum-Efficient Mixed Satellite-Underwater Systems

    Get PDF
    The combination of radio-frequency (RF) communication and underwater optical wireless communication (UOWC) plays a vital role in the underwater Internet of Things (UIoT). This correspondence proposes a dual-hop hybrid satellite underwater system that exploits non-orthogonal multiple access (NOMA) as a spectrum-efficient access technique. The RF link from the satellite to the relay on an oil platform is presumptively subject to a Shadowed-Rician (SR) fading, while the UOWC channels from the relay to the underwater destinations are suggested to follow Exponential-Generalized Gamma (EGG) distributions. The reliability of the system is characterized in terms of both underwater destinations and system outage probabilities (OPs). We derive new closed-form expressions for the OPs under imperfect successive interference cancellation (SIC) conditions. Furthermore, the asymptotic OP and the diversity order (DO) are obtained to learn more about the system’s performance. The results are verified through an extensive representative Monte-Carlo simulation. Also, we investigate the performance against the turbulence of the salty water, air bubbles level (BL), temperature gradients (TG), shadowing parameters, and satellite pointing errors due to satellite motion, even if the beam is pointed at the center of the directive antenna relay, the beam will randomly oscillate. Finally, we contrast our approach with the conventional orthogonal multiple access (OMA) scheme to demonstrate its superiority

    Real-Time Locational Detection of Stealthy False Data Injection Attack in Smart Grid: Using Multivariate-Based Multi-Label Classification Approach

    No full text
    Recently, false data injection attacks (FDIAs) have been identified as a significant category of cyber-attacks targeting smart grids’ state estimation and monitoring systems. These cyber-attacks aim to mislead control system operations by compromising the readings of various smart grid meters. The real-time and precise locational identification of FDIAs is crucial for smart grid security and reliability. This paper proposes a multivariate-based multi-label locational detection (MMLD) mechanism to detect the presence and locations of FDIAs in real-time measurements with precise locational detection accuracy. The proposed architecture is a parallel structure that concatenates Long Short-Term Memory (LSTM) with Temporal Convolutional Neural Network (TCN). The proposed architecture is trained using Keras with Tensorflow libraries, and its performance is verified using an IEEE standard bus system in the MATPOWER package. Extensive testing has shown that the proposed approach effectively improves the presence-detection accuracy for locating stealthy FDIAs in small and large systems under various attack conditions. In addition, this work provides a customized loss function for handling the class imbalance problem. Simulation results reveal that our MMLD technique has a modest advantage in some aspects. First, our mechanism outperforms benchmark models because the problem is formulated as a multivariate-based multi-label classification problem. Second, it needs fewer iterations for training and reaching the optimal model. More specifically, our approach is less complex and more scalable than benchmark algorithms
    corecore