62 research outputs found

    Microdroplet impact at very high velocity

    Get PDF
    Water microdroplet impact at velocities up to 100 m/s for droplet diameters from 12 to 100 um is studied. This parameter range covers the transition from capillary-limited to viscosity-limited spreading of the impacting droplet. Splashing is absent for all measurements; the droplets always gently spread over the surface. The maximum spreading radius is compared to several existing models. The model by Pasandideh-Fard et al. agrees well with the measured data, indicating the importance of a thin boundary layer just above the surface, in which most of the viscous dissipation in the spreading droplet takes place. As explained by the initial air layer under the impacting droplet, a contact angle of 180 degrees is used as model input

    Needle-free injection into skin and soft matter with highly focused microjets

    Get PDF
    The development of needle-free drug injection systems is of great importance to global healthcare. However, in spite of its great potential and research history over many decades, these systems are not commonly used. One of the main problems is that existing methods use diffusive jets, which result in scattered penetration and severe deceleration of the jets, causing frequent pain and insufficient penetration. Another longstanding challenge is the development of accurate small volume injections. In this paper we employ a novel method of needle-free drug injection, using highly-focused high speed microjets, which aims to solve these challenges. We experimentally demonstrate that these unique jets are able to penetrate human skin: the focused nature of these microjets creates an injection spot smaller than a mosquito's proboscis and guarantees a high percentage of the liquid being injected. The liquid substances can be delivered to a much larger depth than conventional methods, and create a well-controlled dispersion pattern. Thanks to the excellent controllability of the microjet, small volume injections become feasible. Furthermore, the penetration dynamics is studied through experiments performed on gelatin mixtures (human soft tissue equivalent) and human skin, agreeing well with a viscous stress model which we develop. This model predicts the depth of the penetration into both human skin and soft tissue. The results presented here take needle-free injections a step closer to widespread use

    Wall forces on a sphere in a rotating liquid-filled cylinder

    Get PDF
    We experimentally study the behavior of a particle slightly denser than the surrounding liquid in solid body rotating flow. Earlier work revealed that a heavy particle has an unstable equilibrium point in unbounded rotation flows. In the confinement of the rotational flow by a cylindrical wall a heavy sphere with density 1.05 g/cm3^3 describes an orbital motion in our experiments. This is due to the effect of the wall near the sphere, i.e. a repulsive force (FwF_w). We model FwF_w on the sphere as a function of the distance from the wall (LL): FW∝Lβˆ’4F_W \propto L^{-4} as proposed by Takemura and Magnaudet (2003). Remarkably, the path from the model including FwF_w reproduce the experimentally measured trajectory. In addition during an orbital motion the particle does not spin around its axis, and we provide a possible explanation for this phenomenon.Comment: 11 pages, 11 figure

    High-speed photoelastic tomography for axisymmetric stress fields in a soft material: temporal evolution of all stress components

    Full text link
    This study presents a novel approach for reconstructing all stress components of the dynamic axisymmetric fields of a soft material using photoelastic tomography (PT) and a high-speed polarization camera. This study focuses on static and dynamic Hertzian contact as an example of transient stress field reconstructions. For the static Hertzian contact (a solid sphere pressed against a gel block), all stress components in the urethane gel, which has an elastic modulus of 47.4 kPa, were reconstructed by PT using the measured photoelastic parameters. The results were compared with theoretical solutions and showed good agreement. For the dynamic Hertzian contact (a sphere impacting gel), a high-speed polarization camera was used to reconstruct the transient stress field within the gel. PT was used to quantitatively measure the shear and axial stress waves and showed different propagation speeds on the substrate. The technique allowed the simultaneous measurement of stress fields ranging from O(10βˆ’1)O(10^{-1}) to O(101)O(10^1) kPa during large deformations, demonstrating its accuracy in capturing rapidly changing stress tensor components in dynamic scenarios. The scaling laws of the calculated impact force agreed with theoretical predictions, validating the accuracy of PT for measuring dynamic axisymmetric stress fields in soft materials.Comment: 16 pages, 15 figure
    • …
    corecore