37 research outputs found

    Predicting human functional maps with neural net modeling

    Get PDF

    PII S0361-9230(00)00435-4 Interpreting PET and fMRI measures of functional neural activity: The effects of synaptic inhibition on cortical activation in human imaging studies

    Get PDF
    ABSTRACT: Human brain imaging methods such as postiron emission tomography and functional magnetic resonance imaging have recently achieved widespread use in the study of both normal cognitive processes and neurological disorders. While many of these studies have begun to yield important insights into human brain function, the relationship between these measurements and the underlying neuronal activity is still not well understood. One open question is how neuronal inhibition is reflected in these imaging results. In this paper, we describe how large-scale modeling can be used to address this question. Specifically, we identify three factors that may play a role in how inhibition affects imaging results: (1) local connectivity; (2) context; and (3) type of inhibitory connection. Simulation results are presented that show how the interaction among these three factors can explain seemingly contradictory experimental results. The modeling suggests that neuronal inhibition can raise brain imaging measures if there is either low local excitatory recurrence or if the region is not otherwise being driven by excitation. Conversely, with high recurrence or actively driven excitation, inhibition can lower observed values

    Working Memory in Attention Deficit/Hyperactivity Disorder is Characterized by a Lack of Specialization of Brain Function

    Get PDF
    Working memory impairments are frequent in Attention Deficit/Hyperactivity Disorder (ADHD) and create problems along numerous functional dimensions. The present study utilized the Visual Serial Addition Task (VSAT) and functional magnetic resonance imaging (fMRI) to explore working memory processes in thirteen typically developing (TD) control and thirteen children with ADHD, Combined type. Analysis of Variance (ANOVA) was used to examine both main effects and interactions. Working memory-specific activity was found in TD children in the bilateral prefrontal cortex. In contrast the within-group map in ADHD did not reveal any working-memory specific regions. Main effects of condition suggested that the right middle frontal gyrus (BA6) and the right precuneus were engaged by both groups during working memory processing. Group differences were driven by significantly greater, non-working memory-specific, activation in the ADHD relative to TD group in the bilateral insula extending into basal ganglia and the medial prefrontal cortex. A region of interest analysis revealed a region in left middle frontal gyrus that was more active during working memory in TD controls. Thus, only the TD group appeared to display working memory-modulated brain activation. In conclusion, children with ADHD demonstrated reduced working memory task specific brain activation in comparison to their peers. These data suggest inefficiency in functional recruitment by individuals with ADHD represented by a poor match between task demands and appropriate levels of brain activity

    Complementary neural representations for faces and words: A computational exploration

    Full text link

    Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network

    Get PDF
    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support

    Combining Functional MRI Data on Multiple Subjects

    No full text

    Striatal activity and reduced white matter increase frontal activity in youths with family histories of alcohol and other substance-use disorders performing a go/no-go task.

    Get PDF
    INTRODUCTION: Youths with a family history of alcohol and other drug use disorders (FH+) are at greater risk of developing substance-use disorders relative to those with no such family histories (FH-). We previously reported that FH+ youths have elevated activity in the supplementary motor area (SMA) and dorsal striatum while performing go/no-go tasks and have reduced frontal white matter integrity. A better understanding of relationships between these variables would provide insight into how frontostriatal circuitry is altered in FH+ youths, which may be an important contributor to their elevated risk. METHODS: In this study, we used structural equation modeling (SEM) to test interactions between activity in the SMA and dorsal striatum in 72 FH+ and 32 FH- youths during go/no-go task performance and to determine whether increased activity in these regions in FH+ youths can be at least partially explained by reduced frontal white matter integrity, as indexed by anterior corona radiata fractional anisotropy and N-acetylaspartate. RESULTS: Increased dorsal striatum activity explained most ( reverse similar75%) of the elevated SMA activity in FH+ youths, and the combined contributions of increased dorsal striatal activity, and decreased white matter integrity fully explained the elevated SMA activity. CONCLUSIONS: These results suggest the elevated frontal cortical activity in FH+ youths is driven both by their increased striatal activity via downstream projections and reduced white matter integrity in frontal cortical projections, the latter likely increasing frontal cortical activity due to increased energy demands required for action potential propagation. As part of our ongoing longitudinal studies we will examine how these frontostriatal alterations relate to risk for developing substance-use disorders
    corecore