3 research outputs found

    Promising bulk nanostructured Cu<sub>2</sub>Se thermoelectrics via high throughput and rapid chemical synthesis

    Get PDF
    A facile and high yield synthesis route was developed for the fabrication of bulk nanostructured copper selenide (Cu2Se) with high thermoelectric efficiency. Starting from readily available precursor materials and by means of rapid and energy-efficient microwave-assisted thermolysis, nanopowders of Cu2Se were synthesized. Powder samples and compacted pellets have been characterized in detail for their structural, microstructural and transport properties. alpha to beta phase transition of Cu2Se was confirmed using temperature dependent X-ray powder diffraction and differential scanning calorimetry analyses. Scanning electron microscopy analysis reveals the presence of secondary globular nanostructures in the order of 200 nm consisting of <50 nm primary particles. High resolution transmission electron microscopy analysis confirmed the highly crystalline nature of the primary particles with irregular truncated morphology. Through a detailed investigation of different parameters in the compaction process, such as applied load, heating rate, and cooling profiles, pellets with preserved nanostructured grains were obtained. An applied load during the controlled cooling profile was demonstrated to have a big impact on the final thermoelectric efficiency of the consolidated pellets. A very high thermoelectric figure of merit (ZT) above 2 was obtained at 900 K for SPS-compacted Cu2Se nanopowders in the absence of the applied load during the controlled cooling step. The obtained ZT exceeds the state of the art in the temperature ranges above phase transition, approaching up to 25% improvement at 900 K. The results demonstrate the prominent improvement in ZT attributed both to the low thermal conductivity, as low as 0.38 W m(-1) K-1 at 900 K, and the enhancement in the power factor of nanostructured Cu2Se. The proposed synthesis scheme as well as the consolidation could lead to reliable production of large scale thermoelectric nanopowders for niche applications

    Temperature dependent structure stability studies on thermoelectric Yb0.025Fe0.3Co0.7Sb3

    No full text
    Depending on their application temperature thermoelectric (TE) materials are classified in three main categories; as low (up to 250°C), intermediate (up to 550°C) and high (above 600°C) temperature. Currently, Skutterudites (CoSb3) based materials have shown promising results in the intermediate temperature range (300-500°C). This family of material is highly suitable for automotive, marine transportation and industrial power generation applications to recover the waste heat from the exhaust and generate electricity. Conventional TE modules need p- and n-type semiconductor materials and for the skutterudite family, iron (Fe) has proven to be among the best candidates for the substitution of cobalt sites. Additionally, rare earths are introduced as rattlers in the crystal cages of the skutterudite to decrease the thermal conductivity, thus improving the figure of merit ZT of the TE material. For practical application for device fabrication, stability of these materials is of great importance. Compositional stability is being addressed as the material decomposes above certain temperature. Temperature dependent x-ray diffraction study was performed on Fe substituted, Yb-filled skutterudites, using Beam Line I711 at MAX LAB, to observe the crystal structure as a function of temperature. Diffraction patterns were collected from room temperature up to 500°C by utilizing Huber furnace. The results show success in filling process showing almost 80% reduction of the thermal conductivity from bulk. Additionally the thermal expansion coefficient value was within the average value for skutterudites which proves practical application of this powder for industrial applications
    corecore