2 research outputs found

    TRAWL: Protection against rogue sites for the masses

    Get PDF
    The number of smartphones reached 3.4 billion in the third quarter of 2016 [1]. These devices facilitate our daily lives and have become the primary way of accessing the web. Although all desktop browsers filter rogue websites, their mobile counterparts often do not filter them at all, exposing their users to websites serving malware or hosting phishing attacks. In this paper we revisit the anti-phishing filtering mechanism which is offered in the most popular web browsers of Android, iOS and Windows Phone. Our results show that mobile users are still unprotected against phishing attacks, as most of the browsers are unable to filter phishing URLs. Thus, we implement and evaluate TRAWL (TRAnsparent Web protection for alL), as a cost effective security control that provides DNS and URL filtering using several blacklists

    Uncertainty-aware authentication model for fog computing in IoT

    Get PDF
    Since the term 'Fog Computing' has been coined by Cisco Systems in 2012, security and privacy issues of this promising paradigm are still open challenges. Among various security challenges, Access Control is a crucial concern for all cloud computing-like systems (e.g. Fog computing, Mobile edge computing) in the IoT era. Therefore, assigning the precise level of access in such an inherently scalable, heterogeneous and dynamic environment is not easy to perform. This work defines the uncertainty challenge for authentication phase of the access control in fog computing because on one hand fog has a number of characteristics that amplify uncertainty in authentication and on the other hand applying traditional access control models does not result in a flexible and resilient solution. Therefore, we have proposed a novel prediction model based on the extension of Attribute Based Access Control (ABAC) model. Our data-driven model is able to handle uncertainty in authentication. It is also able to consider the mobility of mobile edge devices in order to handle authentication. In doing so, we have built our model using and comparing four supervised classification algorithms namely as Decision Tree, Naïve Bayes, Logistic Regression and Support Vector Machine. Our model can achieve authentication performance with 88.14% accuracy using Logistic Regression
    corecore