21 research outputs found

    On applications and limitations of one-dimensional capillarity formulations for media with heterogeneous wettability

    Get PDF
    Force-balance-based one-dimensional algebraic formulations that are often used in characterizing the capillarity of a multi-component system (e.g., predicting capillary height rise inporous media) are discussed. It is shown that such formulations fail to provide accurate predictions when the distribution of wetting (or non-wetting) surfaces is not homogeneous. A more general mathematical formulation is suggested and used to demonstrate that for media with heterogeneous wettability, hydrophilic (or hydrophobic) surfaces clustered in groups will have less contribution to the overall capillarity of the system

    Effects of roughness on droplet apparent contact angles on a fiber

    Get PDF
    This paper reports on our investigation of the effects of surface roughness on the equilibrium shape and apparent contact angles of a droplet deposited on a fiber. In particular, the shape of a droplet on a roughened fiber is studied via the energy minimization method implemented in the surface evolver finite element code. Sinusoidal roughness varying in both the longitudinal and radial directions is considered in the simulations to study the effects of surface roughness on the most stable shape of a droplet on a fiber (corresponding a global minimum energy state). It is found that surface roughness delays droplet shape transition from a symmetric barrel to a clamshell or an asymmetric barrel profile. A phase diagram that includes the effects of fiber roughness on droplet configurations-symmetric barrel, clamshell, and asymmetric barrel-is presented for the first time. It is also found that droplet apparent contact angle tends to decrease on rough fibers. Likewise, roughness tends to increase the force required to detach a droplet from a fiber but the effect diminishes as droplet size increases relative to the size of surface roughness. The results presented in our study have been compared with experimental data or those from prior studies whenever possible, and good agreement has been observed

    Effect of fiber orientation on shape and stability of air-water interface on submerged superhydrophobic electrospun thin coatings

    Get PDF
    To better understand the role of fiber orientation on the stability of superhydrophobicelectrospun coatings under hydrostaticpressures, an integro-differential equation is developed from the balance of forces across the air–water interface between the fibers. This equation is solved numerically for a series of superhydrophobicelectrospun coatings comprised of random and orthogonal fiber orientations to obtain the exact 3D shape of the air–water interface as a function of hydrostaticpressure. More important, this information is used to predict the pressure at which the coatings start to transition from the Cassie state to the Wenzel state, i.e., the so-called critical transition pressure. Our results indicate that coatings composed of orthogonal fibers can withstand higher elevated hydrostaticpressures than those made up of randomly orientated fibers. Our results also prove that thin superhydrophobic coatings can better resist the elevated pressures. The modeling methodology presented here can be used to design nanofibrous superhydrophobic coatings for underwater applications

    Poly(methyl methacrylate) - Palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces

    Full text link
    Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on Poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd cluster are implanted in the polymer and form a continuous layer extending for several tens of nanometers beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared to metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.Comment: 11 pages, 3 figure

    The role of gas dynamics in operation conditions of a pulsed microplasma cluster source for nanostructured thin films deposition

    No full text
    This study intends to explain the fluid dynamic characteristics of a Pulsed Microplasma Cluster Source (PMCS). An axially symmetric steady state simulation is performed for modeling the real-life three-dimensional unsteady flow of hypersonic helium inside our PMCS. Hypersonic helium flow is simulated using Realizable k \u2013 \u3b5 turbulent model. We obtained the jet velocity, density, and pressure field inside our PMCS for the conditions considered and discussed them with respect to our experimental observations. We also presented a qualitative discussion on the formation-termination process of this hypersonic jet. In particular, simulation, in agreement with the experiment, indicates that the middle stage of the injection process, where the Mach disk stands close to the ablation target and at the same time the mass flow rate is relatively high, is almost the appropriate time for firing the electric discharge. We simulated the jet-electrode impingement and tracked the trajectory of the ablated carbon clusters, considered as rigid spheres, inside the PMCS. We noticed that the spatial distribution of the clusters inside PMCS is highly conserved during the free expansion of the cluster beam out of the nozzle (in the vacuum chambers) and is recognizable in the deposited carbon film. This indicates that the geometry of PMCS plays a significant role in the uniformity of the deposited film

    Cluster beam deposition: a tool for nanoscale science and technology

    No full text
    Gas phase nanoparticle production, manipulation and deposition is of primary importance for the synthesis of nanostructured materials and for the development of industrial processes based on nanotechnology. In this review we present and discuss this approach, introducing cluster sources, nanoparticle formation and growth mechanisms and the use of aerodynamic focusing methods that are coupled with supersonic expansions to obtain high intensity cluster beams with a control on nanoparticle mass and spatial distribution. The implication of this technique for the synthesis of nanostructured materials is also presented and applications are highlighted

    The structure of negatively curved spongy carbon

    No full text
    This work reports on the production and characterization of a novel form of nanostructured carbon consisting of three-dimensional, fully connected sp2 networks. This form of carbon is characterized by interconnected thin layers forming a spongy structure with meso- and macroporosity. The spongy carbon is produced by a pulsed microplasma cluster source in the presence of a metal-organic catalyst and it can be deposited as a film by supersonic cluster beam deposition (SCBD). Unlike fullerenes, nanotubes and graphite, which consist of zero-, one- or two-dimensional covalent objects held together by van der Waals' forces, this novel structure consists of a robust, multiply connected graphene sheet which is fully covalent in three dimensions. Theoretical analysis indicates that such carbon sponges apparently grow as minimal surfaces and have the long-sought topological structure of random schwarzites
    corecore