20 research outputs found

    Preliminary genealogical evidence for the Plakophilin-2 gene, PKP2 c.1162C>T founder mutation in cases with Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

    Get PDF
    Introduction: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive form of inherited heart muscle disease characterized by ventricular arrhythmias and sudden cardiac death. Often the pathogenesis is linked to deleterious mutations in the desmosomal gene plakophilin-2 (PKP2). We extended investigations of the pathogenic PKP2 c.1162C>T founder mutation which had previously been reported to occur within four 'unrelated' probands (6.2%) who selfidentified as Afrikaners and who also carried a common haplotype. Common evolutionary history suggests common haplotypes are linked to a common founder and today the Afrikaner populations are a unique ethnic group in South Africa identified with various founder effects for a range of heritable disorders. Aim: This study aimed to identify the common founder using genealogical and molecular methods for the PKP2 c.1162C>T mutation in ARVC families of Afrikaner descent in South Africa. Methods and results: DNA was collected from 46 participants (7 probands and 39 relatives) from the ARVC Registry of South Africa. Probands and relatives were screened for the PKP2 c.1162C>T mutation using High Resolution Melt and Sanger sequencing. The genetic results indicated that 65.2% (30/46) of the family members harbored this mutation. High Resolution Melt, Sanger sequencing and microsatellite typing were used to create a haplotype which encompassed the c.1162C>T mutation and three microsatellite markers (M1, D12S1692 and M2) spanning the PKP2 gene. A common haplotype emerged that segregated amongst all of the affected members of the seven Afrikaner families. Genealogical tracing went back, through multiple generations, into the implicated ancestral lines of the present day Afrikaner families. Four of the seven families attained their 17th century progenitors. Through genealogical analyses of the two largest families, ACM 19 and ACM 38, we identified 116 couples which we reduced to ten candidate South African founder couples who were then subjected to further analyses. After the ACM 12 family was added to the analysis there were five candidate founder couples. Unfortunately, the ACM 71 family did not progress past the 20th century due to tracing difficulties associated with poor record keeping of mixed ancestry data in South Africa and hence, could not be linked back to any other family tree without finding ACM71.5's grandparents. Additionally, ACM 8 and 57 families were recent finds and completion of their genealogical tracing still has to done. Conclusions: Our genetic data showed that not only were 30/46 individuals positive for the PKP2 c.1162C>T mutation but that all 30 individuals also shared the same common haplotype. Our preliminary genealogy tracing data suggests that the PKP2 c.1162C>T mutation segregates at a higher frequency in the Afrikaner population possibly due to a founder effect. The genealogical evidence supports the hypothesis that the PKP2 c.1162C>T mutation is a founder mutation and that descendants of the common founders are at risk of developing ARVC. At least three more families need to be recruited to make a clear conclusion and achieve genealogical evidence based saturation, ideally, a common founder

    Non-communicable diseases pandemic and precision medicine: Is Africa ready?

    Get PDF
    Non-communicable diseases (NCDs) kill more than 41 million people every year, accounting for 71% of all deaths globally. The prevalence of NCDs is estimated to be higher than that of infectious diseases in Africa by 2030. Precision medicine may help with early identification of cases, resulting in timely prevention and improvement in the efficacy of treatments. However, Africa has been lagging behind in genetic research, a key component of the precision medicine initiative. A number of genomic research initiatives which could lead to translational genomics are emerging on the African continent which includes the Non-communicable Diseases Genetic Heritage Study (NCDGHS) and the Men of African Descent and Carcinoma of the Prostate (MADCaP) Network. These offer a promise that precision medicine can be applied in African countries. This review evaluates the advances of genetic studies for cancer, hypertension, type 2 diabetes and body mass index (BMI) in Africa

    Meta-analysis of African ancestry genome-wide association studies identified novel locus and validates multiple loci associated with kidney function

    Get PDF
    Despite recent efforts to increase diversity in genome-wide association studies (GWASs), most loci currently associated with kidney function are still limited to European ancestry due to the underlying sample selection bias in available GWASs. We set out to identify susceptibility loci associated with estimated glomerular filtration rate (eGFRcrea) in 80027 individuals of African-ancestry from the UK Biobank (UKBB), Million Veteran Program (MVP), and Chronic Kidney Disease genetics (CKDGen) consortia. We identified 8 lead SNPs, 7 of which were previously associated with eGFR in other populations. We identified one novel variant, rs77408001 which is an intronic variant mapped to the ELN gene. We validated three previously reported loci at GATM-SPATA5L1, SLC15A5 and AGPAT3. Fine-mapping analysis identified variants rs77121243 and rs201602445 as having a 99.9% posterior probability of being causal. Our results warrant designing bigger studies within individuals of African ancestry to gain new insights into the pathogenesis of Chronic Kidney Disease (CKD), and identify genomic variants unique to this ancestry that may influence renal function and disease

    Meta-Analysis and Multivariate GWAS Analyses in 77,850 Individuals of African Ancestry Identify Novel Variants Associated with Blood Pressure Traits

    Get PDF
    High blood pressure (HBP) has been implicated as a major risk factor for cardiovascular diseases in several populations, including individuals of African ancestry. Despite the elevated burden of HBP-induced cardiovascular diseases in Africa and other populations of African descent, limited genetic studies have been carried out to explore the genetic mechanism driving this phenomenon. We performed genome-wide association univariate and multivariate analyses of both systolic (SBP) and diastolic blood pressure (DBP) traits in 77, 850 individuals of African ancestry. We used summary statistics data from six independent cohorts, including the African Partnership for Chronic Disease Research (APCDR), the UK Biobank, and the Million Veteran Program (MVP). FUMA was used to annotate, prioritize, visualize, and interpret our findings to gain a better understanding of the molecular mechanism(s) underlying the genetics of BP traits. Finally, we undertook a Bayesian fine-mapping analysis to identify potential causal variants. Our meta-analysis identified 10 independent variants associated with SBP and 9 with DBP traits. Whilst our multivariate GWAS method identified 21 independent signals, 18 of these SNPs have been previously identified. SBP was linked to gene sets involved in biological processes such as synapse assembly and cell-cell adhesion via plasma membrane adhesion. Of the 19 independent SNPs identified in the BP meta-analysis, only 11 variants had posterior probability (PP) of > 50%, including one novel variant: rs562545 (MOBP, PP = 77%). To facilitate further research and fine-mapping of high-risk loci/variants in highly susceptible groups for cardiovascular disease and other related traits, large-scale genomic datasets are needed. Our findings highlight the importance of including ancestrally diverse populations in large GWASs and the need for diversity in genetic research

    Genetic loci implicated in meta-analysis of body shape in Africans.

    Get PDF
    BACKGROUND AND AIMS: Obesity is one of the leading causes of non-communicable diseases (NCD). Thus, NCD risk varies in obese individuals based on the location of their fat depots; while subcutaneous adiposity is protective, visceral adiposity increases NCD risk. Although, previously anthropometric traits have been used to quantify body shape in low-income settings, there is no consensus on how it should be assessed. Hence, there is a growing interest to evaluate body shape derived from the principal component analysis (PCA) of anthropometric traits; however, this is yet to be explored in individuals of African ancestry whose body shape is different from those of Europeans. We set out to capture body shape in its multidimensional structure and examine the association between genetic variants and body shape in individuals of African ancestry. METHOD AND RESULTS: We performed a genome-wide association study (GWAS) for body shape derived from PCA analysis of anthropometric traits in the Ugandan General Population Cohort (GPC, n = 6407) and the South African Zulu Cohort (SZC, n = 2595), followed by a GWAS meta-analysis to assess the genetic variants associated with body shape. We identified variants in FGF12, GRM8, TLX1NB and TRAP1 to be associated with body shape. These genes were different from the genes been associated with BMI, height, weight, WC and waist-hip ration in continental Africans. Notably, we also observed that a standard deviation change in body shape was associated with an increase in blood pressure and blood lipids. CONCLUSION: Variants associated with body shape, as a composite variable might be different for those of individual anthropometric traits. Larger studies are required to further explore these phenomena

    Genome-wide association analysis of cystatin-C kidney function in continental Africa

    Get PDF
    BACKGROUND: Chronic kidney disease is becoming more prevalent in Africa, and its genetic determinants are poorly understood. Creatinine-based estimated glomerular filtration rate (eGFR) is commonly used to estimate kidney function, modelling the excretion of the endogenous biomarker (creatinine). However, eGFR based on creatinine has been shown to inadequately detect individuals with low kidney function in Sub-Saharan Africa, with eGFR based on cystatin-C (eGFRcys) exhibiting significantly superior performance. Therefore, we opted to conduct a GWAS for eGFRcys. METHODS: Using the Uganda Genomic Resource, we performed a genome-wide association study (GWAS) of eGFRcys in 5877 Ugandans and evaluated replication in independent studies. Subsequently, putative causal variants were screened through Bayesian fine-mapping. Functional annotation of the GWAS loci was performed using Functional Mapping and Annotation (FUMA). FINDINGS: Three independent lead single nucleotide polymorphisms (SNPs) (P-value 99%. The rs911119 SNP maps to the cystatin C gene and has been previously associated with eGFRcys among Europeans. With gene-set enrichment analyses of the olfactory receptor family 51 overlapping genes, we identified an association with the G-alpha-S signalling events. INTERPRETATION: Our study found two previously unreported associated SNPs for eGFRcys in continental Africans (rs59288815 and rs4277141) and validated a previously well-established SNP (rs911119) for eGFRcys. The identified gene-set enrichment for the G-protein signalling pathways relates to the capacity of the kidney to readily adapt to an ever-changing environment. Additional GWASs are required to represent the diverse regions in Africa. FUNDING: Wellcome (220740/Z/20/Z)

    Rationale, Design, and the Baseline Characteristics of the RHDGen (The Genetics of Rheumatic Heart Disease) Network Study

    Get PDF
    BACKGROUND: The genetics of rheumatic heart disease (RHDGen) Network was developed to assist the discovery and validation of genetic variations and biomarkers of risk for rheumatic heart disease (RHD) in continental Africans, as a part of the global fight to control and eradicate rheumatic fever/RHD. Thus, we describe the rationale and design of the RHDGen study, comprising participants from 8 African countries. METHODS: RHDGen screened potential participants using echocardiography, thereafter enrolling RHD cases and ethnically-matched controls for whom case characteristics were documented. Biological samples were collected for conducting genetic analyses, including a discovery case-control genome-wide association study (GWAS) and a replication trio family study. Additional biological samples were also collected, and processed, for the measurement of biomarker analytes and the biomarker analyses are underway. RESULTS: Participants were enrolled into RHDGen between December 2012 and March 2018. For GWAS, 2548 RHD cases and 2261 controls (3301 women [69%]; mean age [SD], 37 [16.3] years) were available. RHD cases were predominantly Black (66%), Admixed (24%), and other ethnicities (10%). Among RHD cases, 34% were asymptomatic, 26% had prior valve surgery, and 23% had atrial fibrillation. The trio family replication arm included 116 RHD trio probands and 232 parents. CONCLUSIONS: RHDGen presents a rare opportunity to identify relevant patterns of genetic factors and biomarkers in Africans that may be associated with differential RHD risk. Furthermore, the RHDGen Network provides a platform for further work on fully elucidating the causes and mechanisms associated with RHD susceptibility and development

    Genome-Wide Association and Mendelian Randomization Analysis Reveal the Causal Relationship Between White Blood Cell Subtypes and Asthma in Africans

    Get PDF
    Background: White blood cell (WBC) traits and their subtypes such as basophil count (Bas), eosinophil count (Eos), lymphocyte count (Lym), monocyte count (Mon), and neutrophil counts (Neu) are known to be associated with diseases such as stroke, peripheral arterial disease, and coronary heart disease. Methods: We meta-analyze summary statistics from genome-wide association studies in 17,802 participants from the African Partnership for Chronic Disease Research (APCDR) and African ancestry individuals from the Blood Cell Consortium (BCX2) using GWAMA. We further carried out a Bayesian fine mapping to identify causal variants driving the association with WBC subtypes. To access the causal relationship between WBC subtypes and asthma, we conducted a two-sample Mendelian randomization (MR) analysis using summary statistics of the Consortium on Asthma among African Ancestry Populations (CAAPA: ncases = 7,009, ncontrol = 7,645) as our outcome phenotype. Results: Our metanalysis identified 269 loci at a genome-wide significant value of (p = 5 × 10−9) in a composite of the WBC subtypes while the Bayesian fine-mapping analysis identified genetic variants that are more causal than the sentinel single-nucleotide polymorphism (SNP). We found for the first time five novel genes (LOC126987/MTCO3P14, LINC01525, GAPDHP32/HSD3BP3, FLG-AS1/HMGN3P1, and TRK-CTT13-1/MGST3) not previously reported to be associated with any WBC subtype. Our MR analysis showed that Mon (IVW estimate = 0.38, CI: 0.221, 0.539, p < 0.001), Neu (IVW estimate = 0.189, CI: 0.133, 0.245, p < 0.001), and WBCc (IVW estimate = 0.185, CI: 0.108, 0.262, p < 0.001) are associated with increased risk of asthma. However, there was no evidence of causal relationship between Lym and asthma risk. Conclusion: This study provides insight into the relationship between some WBC subtypes and asthma and potential route in the treatment of asthma and may further inform a new therapeutic approach

    Multivariate GWAS analysis reveals loci associated with liver functions in continental African populations. S1 File

    No full text
    The study sought to identify genetic loci associated with liver biomarker levels with a shared genetic basis, using a multivariate genome-wide association study (GWAS) approach. The dataset contains the results of a joint analysis from two genetically distinct African populations, the Ugandan Genome Resource (UGR = 6,407) and South African Zulu cohort (SZC = 2,598)
    corecore