91 research outputs found

    Ninjurin1 positively regulates osteoclast development by enhancing the survival of prefusion osteoclasts

    Get PDF
    Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1(-/-) mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis in prefusion OCs (preOCs). Overexpression of Ninj1 enhanced the survival of mouse macrophage/preOC RAW264.7 cells in osteoclastogenic culture, suggesting that Ninj1 is important for the survival of preOCs. Finally, analysis of publicly available microarray data sets revealed a potent correlation between high NINJ1 expression and destructive bone disorders in humans. Our data indicate that Ninj1 plays an important role in bone homeostasis by enhancing the survival of preOCs

    Tetrahydroabietic Acid, a Reduced Abietic Acid, Inhibits the Production of Inflammatory Mediators in RAW264.7 Macrophages Activated with Lipopolysaccharide

    Get PDF
    Abietic acid (AA), the main component of the rosin fraction of oleoresin synthesized by conifer species, has been reported to have anti-inflammatory effects. AA is a weak contact allergen; however, compounds resulting from its oxidation by air elicit stronger allergic response. Hydrogenation of the conjugated double bonds of AA, as in tetrahydroabietic acid (THAA), decreases its susceptibility to air oxidation and would thus reduce the allergenicity of AA. The aim of this study was to investigate whether THAA could exert anti-inflammatory effects to the same extent as AA in RAW264.7 macrophages activated with the endotoxin lipopolysaccharide (LPS). THAA and AA inhibited the production of nitric oxide (NO) and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively, in LPS-activated RAW264.7 macrophages. They also inhibited the LPS-induced production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Both THAA and AA prevented the LPS-induced nuclear translocation of the nuclear factor-κB/p65 subunit, suggesting that THAA may inhibit the production of pro-inflammatory mediators through the same mechanism as AA. In comparison, the anti-inflammatory effects of THAA and AA were almost identical, indicating that THAA retains the anti-inflammatory activity of AA at least in LPS-activated RAW264.7 macrophages

    Nonleukemic Granulocytic Sarcoma in the Bile Duct: A Case Report

    Get PDF
    Granulocytic sarcoma (GS) is an extramedullary tumor composed of immature myeloid cells, typically occurring during the course of acute myelogenous leukemia. Nonleukemic GS, that is, GS with no evidence of overt leukemia and no previous history of leukemia, is very rare, and even more unusual is nonleukemic GS of the bile duct. We report a case of nonleukemic GS of the bile duct. The patient was initially misdiagnosed as a bile duct carcinoma arising in the hilum of the liver (so-called Klatskin tumor), and received a right lobectomy of the liver. Histological examination of the tumor yielded the diagnosis of GS, and the bone marrow biopsy did not show any evidence of leukemia. Considering the risk of subsequent development of overt leukemia, the patient was treated with two cycles of combination chemotherapy as used in the cases of acute myelogenous leukemia. To date, he has remained free of disease 15 months after treatment

    Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-kappaB pathway

    Get PDF
    Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) are potent angiogenic factors that have been used clinically to induce angiogenesis. However, concerns have been raised about VEGF because of its proinflammatory actions, which include enhancing the adhesion of leukocytes to endothelial cells. We have examined the possible antiinflammatory effects of HGF on the vasculature. HGF, unlike VEGF, did not alter leukocyte adhesion to endothelial cells. Instead it inhibited VEGF-induced leukocyte-endothelial cell interactions and the endothelial expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). In a skin inflammation model, VEGF-treated mice showed a significant increase of leukocytes infiltrated or adherent to the luminal surface of blood vessels, as compared with vehicle- or HGF-treated mice. The VEGF effect was markedly suppressed by coadministration of HGF. RT-PCR and promoter analysis revealed that HGF downregulated VEGF-mediated expression of ICAM-1 and VCAM-1 at the transcriptional level. Furthermore, these inhibitory effects coincided with suppression of IkappaB kinase activity, and this in turn prevented the activation of the inflammatory transcription factor NF-kappaB. Taken together, our results demonstrate that HGF suppresses VEGF-induced inflammation presumably by inhibiting the endothelial NF-kappaB pathway. This suggests that combined treatment with HGF and VEGF could be superior to treatment with either factor alone for enhancing therapeutic angiogenesis while avoiding inflammation

    Transmodulation between phospholipase D and c-Src enhances cell proliferation

    Get PDF
    Phospholipase D (PLD) has been implicated in the signal transduction pathways initiated by several mitogenic protein tyrosine kinases. We demonstrate for the first time that most notably PLD2 and to a lesser extent the PLD1 isoform are tyrosine phosphorylated by c-Src tyrosine kinase via direct association. Moreover, epidermal growth factor induced tyrosine phosphorylation of PLD2 and its interaction with c-Src in A431 cells. Interaction between these proteins is via the pleckstrin homology domain of PLD2 and the catalytic domain of c-Src. Coexpression of PLD1 or PLD2 with c-Src synergistically enhances cellular proliferation compared with expression of either molecule. While PLD activity as a lipid-hydrolyzing enzyme is not affected by c-Src, wildtype PLDs but not catalytically inactive PLD mutants significantly increase c-Src kinase activity, up-regulating c-Src-mediated paxillin phosphorylation and extracellular signal-regulated kinase activity. These results demonstrate the critical role of PLD catalytic activity in the stimulation of Src signaling. In conclusion, we provide the first evidence that c-Src acts as a kinase of PLD and PLD acts as an activator of c-Src. This transmodulation between c-Src and PLD may contribute to the promotion of cellular proliferation via amplification of mitogenic signaling pathwaysclos

    Ginseng Berry Extract Prevents Atherogenesis via Anti-Inflammatory Action by Upregulating Phase II Gene Expression

    Get PDF
    Ginseng berry possesses higher ginsenoside content than its root, which has been traditionally used in herbal medicine for many human diseases, including atherosclerosis. We here examined the antiatherogenic effects of the Korean ginseng berry extract (KGBE) and investigated its underlying mechanism of action in vitro and in vivo. Administration of KGBE decreased atherosclerotic lesions, which was inversely correlated with the expression levels of phase II genes to include heme oxygenase-1 (HO-1) and glutamine-cysteine ligase (GCL). Furthermore, KGBE administration suppressed NF-κB-mediated expression of atherogenic inflammatory genes (TNF-α, IL-1β, iNOS, COX-2, ICAM-1, and VCAM-1), without altering serum cholesterol levels, in ApoE-/- mice fed a high fat-diet. Treatment with KGBE increased phase II gene expression and suppressed lipopolysaccharide-induced reactive oxygen species production, NF-κB activation, and inflammatory gene expression in primary macrophages. Importantly, these cellular events were blocked by selective inhibitors of HO-1 and GCL. In addition, these inhibitors reversed the suppressive effect of KGBE on TNF-α-mediated induction of ICAM-1 and VCAM-1, resulting in decreased interaction between endothelial cells and monocytes. These results suggest that KGBE ameliorates atherosclerosis by inhibiting NF-κB-mediated expression of atherogenic genes via upregulation of phase II enzymes and thus has therapeutic or preventive potential for atherosclerosis

    Co-transplantation of Human Mesenchymal Stem Cells Promotes Human CD34+ Cells Engraftment in a Dose-dependent Fashion in NOD/SCID Mice

    Get PDF
    Mesenchymal stem cells (MSCs) have recently been identified and characterized in humans. Moreover, MSC secrete cytokines that can support hematopoietic progenitor growth. In the present study, we evaluated whether the efficacy of hematopoietic stem cell transplantation is improved by their co-transplantation with MSC, and whether this is positively correlated with the dose of infused MSCs. Accordingly, irradiated NOD/SCID mice were transplanted with 1×105 human CD34+ cells in the presence or absence of culture expanded MSCs (1×106 or 5×106). We evaluated human hematopoietic cell engraftment by flow cytometry and assessed MSC tissue distributions by fluorescence in situ hybridization. We found that CD45+ and CD34+ cell levels were significantly elevated in a dose-dependent manner in cotransplanted mice 4 weeks after transplantation. The engraftments of CD33+ and CD19+ cells also increased dose-dependently. However, the engraftment of CD3+ cells did not increase after co-transplantation with MSCs. Human Y chromosome+ cells were observed in multiple tissues and were more frequently observed in mice co-transplanted with 5×106 rather than 1×106 MSCs. These results suggest that MSCs are capable of enhancing hematopoietic cell engraftment and distribution in multiple organs in a dose-dependent fashion

    2707 Gastric Mucosa-Associated Lymphoid Tissue Lymophoma Treated by Endoscopic Mucosal Resection

    No full text

    Composite Control for Singularly Perturbed Bilinear Systems with Successive Galerkin Approximation

    No full text
    This paper presents the closed-loop composite control of singularly perturbed bilinear systems with a quadratic performance criterion, using successive Galerkin approximation(SGA). The singularly perturbed bilinear system is decomposed into two subsystems of a slow-time and fast-time scale by the singular perturbation theory, and we obtain feedback control laws from each subsystem using SGA. We design the composite control law that consists of two optimal control laws of each subsystem. One of the purpose of this paper is to design the closed-loop composite controller of singularly perturbed bilinear systems with SGA method. The other is to reduce the disadvantages of SGA method. I
    corecore