16 research outputs found

    Collaborative last-mile delivery and pick-up in city logistics

    No full text

    The beneficial effect of information sharing in a two-stage reverse supply chain

    No full text
    In this paper, we analyse the effect of information sharing structure in which collection and re-manufacturing capacity design is considered under the stochastic environment.We consider a two-stage reverse supply chain, which consists of single collector and single remanufacturer, and these two actors collaborate with each other to share their own information in order to get better performance from system perspective.We develop four different optimization models according to the schemes of these two actors' collaboration for information sharing.Through a numerical example, we examine the value of information sharing with consideration of variance, and identify the robustness of the models in a simulation study. From the extensive numerical analyses, we conclude that the issues who leads information sharing scheme between two actors and which information is shared can show different performance for both each individual actor and system.Furthermore, with respect to information uncertainty, the significance of variance management on return rate in a reverse supply chain is also identified

    Collaborative last-mile delivery and pick-up in city logistics

    No full text

    Green Supply Chain Management Practices’ Effect on the Performance of Turkish Business Relationships

    Get PDF
    The main aim of the study is to examine the influence of both external and internal actors on green supply chain management (GSCM) practices. By the way, this paper is to provide a first-hand understanding about the procedures taken by Turkish business firms and their logistics providers and supply chain business firms to operate in an environmental friendly supply chain. The result of this research is very important to promote performance of Turkish business relations in green perspectives. To find the right answers, comprehensive questionnaire forms were designed. We collect data from 2014 May to 2015 July through the Turkish companies. More than 180 companies have contributed in this great research. We analyzed data by statistical methods. One of the important results is the third party logistics service providers influence firms have a proactive green behavior

    Whole-Genome Resequencing of Near-Isogenic Lines Reveals a Genomic Region Associated with High <i>Trans</i>-Lycopene Contents in Watermelon

    No full text
    Trans-lycopene is a functional phytochemical abundant in red-fleshed watermelons, and its contents vary among cultivars. In this study, the genetic basis of high trans-lycopene contents in scarlet red flesh was evaluated. Three near-isogenic lines (NILs) with high trans-lycopene contents were derived from the scarlet red-fleshed donor parent DRD and three coral red-fleshed (low trans-lycopene contents) recurrent parents. The lycopene contents of DRD (589.4 ± 71.8 µg/g) were two times higher than that of the recurrent parents, and values for NILs were intermediate between those of the parents. Coral red-fleshed lines and F1 cultivars showed low trans-lycopene contents (135.7 ± 18.0 µg/g to 213.7 ± 39.5 µg/g). Whole-genome resequencing of two NILs and their parents and an analysis of genome-wide single-nucleotide polymorphisms revealed three common introgressed regions (CIRs) on chromosomes 6, 9, and 10. Twenty-eight gene-based cleaved amplified polymorphic sequence (CAPS) markers were developed from the CIRs. The CAPS markers derived from CIR6 on chromosome 6, spanning approximately 1 Mb, were associated (R2 = 0.45–0.72) with the trans-lycopene contents, particularly CIR6-M1 and CIR6-M4. Our results imply that CIR6 is a major genomic region associated with variation in the trans-lycopene contents in red-fleshed watermelon, and CIR6-M1 and CIR6-M4 may be useful for marker-assisted selection

    Effect of Low-Temperature Tolerant Rootstocks on the Growth and Fruit Quality of Watermelon in Semi-Forcing and Retarding Culture

    No full text
    Watermelon grafting is practiced in order to improve tolerance to poor environments such as low temperature. This study was conducted to investigate the effect of low-temperature tolerant bottle gourd (Lagenaria siceraria) rootstocks on the growth and fruit quality of watermelon in semi-forcing and retarding culture where plants were exposed to low or high temperature. Five bottle gourd accessions (FR79, IT207112, BG702, BG703, and FRD22) with low temperature tolerance were evaluated as rootstock for the watermelon scion ‘Sambokkul’. Non-grafted watermelon and watermelon grafted onto commercial rootstock ‘Shintozwa’ (Cucurbita maxima D. × C. moschata D.) or ‘Bullojangsaeng’ (L. siceraria) were used as controls. Watermelons were cultivated in spring (April to June, semi-forcing culture) and autumn (August to October, retarding culture). The responses to low-temperature, growth, yield, and fruit quality differed depending on the rootstocks and growing season. In semi-forcing culture, the monthly averages of daily and minimum temperature in April were, respectively, 13.4 and 1.5 °C. Although the low temperature of the early growth stage suppressed the initial growth of watermelons, grafting mitigated the low-temperature stress. The fruit quality of non-grafted watermelons was greater, but the fruit mass was the lowest (4.8 kg). Grafting onto ‘Shintozwa’ increased the fruit weight (7.0 kg) but reduced the fruit quality. Grafting onto bottle gourd rootstocks had high affinity, good root growth, tolerance to low temperature, and little effect on fruit quality. In retarding culture, the temperature conditions in early and late growth were very high and low, respectively. The growth and fruit quality of grafted watermelons were not superior to those of non-grafted watermelons. Accordingly, these results suggest that watermelon grafting onto the bottle gourd rootstocks may increase the low-temperature tolerance, especially in the early growth stage, and the marketable yield without a reduction in fruit quality. The most promising accession for this purpose was found to be ‘FR79’

    Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization.

    No full text
    Hippo signaling controls organ size by regulating cell proliferation and apoptosis. Yes-associated protein (YAP) is a key downstream effector of Hippo signaling, and LATS-mediated phosphorylation of YAP at Ser127 inhibits its nuclear localization and transcriptional activity. Here, we report that Nemo-like kinase (NLK) phosphorylates YAP at Ser128 both in vitro and in vivo, which blocks interaction with 14-3-3 and enhances its nuclear localization. Depletion of NLK increases YAP phosphorylation at Ser127 and reduces YAP-mediated reporter activity. These results suggest that YAP phosphorylation at Ser128 and at Ser127 may be mutually exclusive. We also find that with the increase in cell density, nuclear localization and the level of NLK are reduced, resulting in reduction in YAP phosphorylation at Ser128. Furthermore, knockdown of Nemo (the Drosophila NLK) in fruit fly wing imaginal discs results in reduced expression of the Yorkie (the Drosophila YAP) target genes expanded and DIAP1, while Nemo overexpression reciprocally increased the expression. Overall, our data suggest that NLK/Nemo acts as an endogenous regulator of Hippo signaling by controlling nuclear localization and activity of YAP/Yorkie
    corecore