84 research outputs found

    Influence of ripening stages on phytochemical composition and bioavailability of ginseng berry (Panax ginseng C.A. Meyer)

    Get PDF
    The presence of large amounts of bioactive compounds such as saponins and flavonoids in ginseng (Panax ginseng) berry suggests its potential as a functional resource for the food and medical industries, despite the fact that been considered a useless by-products of P. ginseng. In this study, we examined the variations in the antioxidant and anti-melanogenic potential of ginseng berry during the ripening process. We found that fully ripe berry extracts (Go-S3) contained the highest level of antioxidant and anti-melanogenic activities. Phytochemical screening suggested that alterations in polyphenol contents correlated with the variation in bioactive principles of ginseng berry during the ripening process. Furthermore, results obtained by quantitative real-time PCR, western blot, tyrosinase inhibition assay and molecular docking analysis suggested that Go-S3 probably inhibits tyrosinase activity by interacting with copper-coordinating histidines and second shell residues of tyrosinase, resulting in the reduction of melanin production in ฮฑ-MSH-stimulated B16F10 cells. Taken together, these finding suggest the potential of ginseng berry as a resource for functional applications in the cosmetic industries and demonstrate that fruit ripening stages have profound effects on the pharmaceutical value of ginseng berry

    Dynamical Response of Nanomechanical Resonators to Biomolecular Interactions

    Full text link
    We studied the dynamical response of a nanomechanical resonator to biomolecular (e.g. DNA) adsorptions on a resonator's surface by using a theoretical model, which considers the Hamiltonian H such that the potential energy consists of elastic bending energy of a resonator and the potential energy for biomolecular interactions. It was shown that the resonant frequency shift of a resonator due to biomolecular adsorption depends on not only the mass of adsorbed biomolecules but also the biomolecular interactions. Specifically, for dsDNA adsorption on a resonator's surface, the resonant frequency shift is also dependent on the ionic strength of a solvent, implying the role of molecular interactions on the dynamic behavior of a resonator. This indicates that nanomechanical resonators may enable one to quantify the biomolecular mass, implying the enumeration of biomolecules, as well as gain insight into intermolecular interactions between adsorbed biomolecules on the surface.Comment: 17 page, 4 figures, accepted for publication at PRB. Physical Review B, accepte

    The Quantitative Overhead Analysis for Effective Task Migration in Biosensor Networks

    Get PDF
    We present a quantitative overhead analysis for effective task migration in biosensor networks. A biosensor network is the key technology which can automatically provide accurate and specific parameters of a human in real time. Biosensor nodes are typically very small devices, so the use of computing resources is restricted. Due to the limitation of nodes, the biosensor network is vulnerable to an external attack against a system for exhausting system availability. Since biosensor nodes generally deal with sensitive and privacy data, their malfunction can bring unexpected damage to system. Therefore, we have to use a task migration process to avoid the malfunction of particular biosensor nodes. Also, it is essential to accurately analyze overhead to apply a proper migration process. In this paper, we calculated task processing time of nodes to analyze system overhead and compared the task processing time applied to a migration process and a general method. We focused on a cluster ratio and different processing time between biosensor nodes in our simulation environment. The results of performance evaluation show that task execution time is greatly influenced by a cluster ratio and different processing time of biosensor nodes. In the results, the proposed algorithm reduces total task execution time in a migration process

    Blood and milk metabolites of Holstein dairy cattle for the development of objective indicators of a subacute ruminal acidosis

    Get PDF
    Objective The purpose of this study was to perform a comparative analysis of metabolite levels in serum and milk obtained from cows fed on different concentrate to forage feed ratios. Methods Eight lactating Holstein cows were divided into two groups: a high forage ratio diet (HF; 80% Italian ryegrass and 20% concentrate of daily intake of dry matter) group and a high concentrate diet (HC; 20% Italian ryegrass and 80% concentrate) group. Blood was collected from the jugular vein, and milk was sampled using a milking machine. Metabolite levels in serum and milk were estimated using proton nuclear magnetic resonance and subjected to qualitative and quantitative analyses performed using Chenomx 8.4. For statistical analysis, Studentโ€™s t-test and multivariate analysis were performed using Metaboanalyst 4.0. Results In the principal component analysis, a clear distinction between the two groups regarding milk metabolites while serum metabolites were shown in similar. In serum, 95 metabolites were identified, and 13 metabolites (include leucine, lactulose, glucose, betaine, etc.) showed significant differences between the two groups. In milk, 122 metabolites were identified, and 20 metabolites (include urea, carnitine, acetate, butyrate, arabinitol, etc.) showed significant differences. Conclusion Our results show that different concentrate to forage feed ratios impact the metabolite levels in the serum and milk of lactating Holstein cows. A higher number of metabolites in milk, including those associated with milk fat synthesis and the presence of Escherichia coli in the rumen, differed between the two groups compared to that in the serum. The results of this study provide a useful insight into the metabolites associated with different concentrate to forge feed ratios in cows and may aid in the search for potential biomarkers for subacute ruminal acidosis

    A Single Recurrent Mutation in the 5โ€ฒ-UTR of IFITM5 Causes Osteogenesis Imperfecta Type V

    Get PDF
    Osteogenesis imperfecta (OI) is a heterogenous group of genetic disorders of bone fragility. OI type V is an autosomal-dominant disease characterized by calcification of the forearm interosseous membrane, radial head dislocation, a subphyseal metaphyseal radiodense line, and hyperplastic callus formation; the causative mutation involved in this disease has not been discovered yet. Using linkage analysis in a four-generation family and whole-exome sequencing, we identified a heterozygous mutation of c.โˆ’14C>T in the 5โ€ฒ-untranslated region of a gene encoding interferon-induced transmembrane protein 5 (IFITM5). It completely cosegregated with the disease in three families and occurred de novo in five simplex individuals. Transfection of wild-type and mutant IFITM5 constructs revealed that the mutation added five amino acids (Met-Ala-Leu-Glu-Pro) to the N terminus of IFITM5. Given that IFITM5 expression and protein localization is restricted to the skeletal tissue and IFITM5 involvement in bone formation, we conclude that this recurrent mutation would have a specific effect on IFITM5 function and thus cause OI type V

    Clinical significance of cytogenetic aberrations in bone marrow of patients with diffuse large B-cell lymphoma: prognostic significance and relevance to histologic involvement

    Get PDF
    Background : Although knowledge of the genetics of diffuse large B-cell lymphoma (DLBCL) has been increasing, little is known about the characteristics and prognostic significance of cytogenetic abnormalities and the clinical utility of cytogenetic studies performed on bone marrow (BM) specimens. To investigate the significance of isolated cytogenetic aberrations in the absence of histologic BM involvement, we assessed the implication of cytogenetic staging and prognostic stratification by a retrospective multicenter analysis of newly diagnosed DLBCL patients. Methods : We analyzed cytogenetic and clinical data from 1585 DLBCL patients whose BM aspirates had been subjected to conventional karyotyping for staging. If available, interphase fluorescence in situ hybridization (FISH) data were also collected from patients. Results : Histologic BM involvement were found in 259/1585 (16.3%) patients and chromosomal abnormalities were detected in 192 (12.1%) patients (54 patients with single abnormalities and 138 patients with 2 or more abnormalities). Isolated cytogenetic aberrations (2 or more abnormalities) without histologic involvement were found in 21 patients (1.3%). Two or more cytogenetic abnormalities were associated with inferior overall survival (OS) compared with a normal karyotype or single abnormality in both patients with histologic BM involvement (5-year OS, 16.5% vs. 52.7%; P < 0.001) and those without BM involvement (31.8% vs. 66.5%; P < 0.001). This result demonstrated that BM cytogenetic results have a significant prognostic impact that is independent of BM histology. The following abnormalities were most frequently observed: rearrangements involving 14q32, 19q13, 19p13, 1p, 3q27, and 8q24; del(6q); dup(1q); and trisomy 18. In univariate analysis, several specific abnormalities including abnormalities at 16q22-q24, 6p21-p25, 12q22-q24, and -17 were associated with poor prognosis. Multivariate analyses performed for patients who had either chromosomal abnormalities or histologic BM involvement, revealed IPI high risk, โ‰ฅ 2 cytogenetic abnormalities, and several specific chromosomal abnormalities, including abnormalities at 19p13, 12q22-q24, 8q24, and 19q13 were significantly associated with a worse prognosis. Conclusions : We suggest that isolated cytogenetic aberrations can be regarded as BM involvement and cytogenetic evaluation of BM improves staging accuracy along with prognostic information for DLBCL patients.This work was supported by (1) the Basic Science Research Program through the National Research Foundation of Korea (NRF) Funded by the Ministry of Education, Science and Technology (2012โ€“0002257), (2) a grant (10172KFDA993) from Korea Food & Drug Administration, (3) a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A120216).Peer Reviewe

    Behavior and Design of Distributed Belt Walls as Virtual Outriggers for Concrete High-Rise Buildings

    No full text
    Abstract A new lateral force-resisting structural system for concrete high-rise buildings, distributed belt wall system, is proposed. Unlike conventional belt structures, the belt walls infilling the space between perimeter columns are distributed separately along the overall building height. In this study, the force transfer mechanism and performance of the distributed belt walls, acting as virtual outriggers under lateral load, are investigated. For the reinforcement of the belt walls subjected to high shear demand, a reinforcing method using high-strength prestressing strands (i.e. PSC belt wall) is suggested, and the shear strength of the PSC belt walls is estimated based on the compression field theory. By performing nonlinear finite element analysis, the shear behavior of the PSC belt walls, including cracking and yield strengths, is investigated in detail. Based on these investigations, recommendations for the shear design of the belt walls reinforced by high-strength prestressing strands are given

    Behavior of Longitudinal Plate-to-Rectangular Hollow Structural Section K-Connections Subjected to Cyclic Loading

    No full text
    This study investigated the behavior of longitudinal plate-to-rectangular hollow section (RHS) K-connections to which concrete-filled composite branch members were jointed. At the connections, longitudinal plates with or without chord face stiffener were welded to the RHS chord member and the branch members were connected to the longitudinal plates by bolting (slip-critical connection). Cyclic tests were performed for three longitudinal plate-to-RHS K-connection specimens. The tests showed that the connection behavior was dominated by the plastification of the thin chord face and by the slip and hole-bearing resistance of the bolted joint. Chord face plastification was prevented or delayed by using the stiffened longitudinal plate. The strengths of the plate-to-RHS K-connections with or without the chord face stiffener, depending on the governing limit states, were estimated in accordance with current design codes, and the results were compared with the test results

    Effects of Lap Splice Details on Seismic Performance of RC Columns

    No full text
    • โ€ฆ
    corecore