2,065 research outputs found

    A Large-Scale 3D Face Mesh Video Dataset via Neural Re-parameterized Optimization

    Full text link
    We propose NeuFace, a 3D face mesh pseudo annotation method on videos via neural re-parameterized optimization. Despite the huge progress in 3D face reconstruction methods, generating reliable 3D face labels for in-the-wild dynamic videos remains challenging. Using NeuFace optimization, we annotate the per-view/-frame accurate and consistent face meshes on large-scale face videos, called the NeuFace-dataset. We investigate how neural re-parameterization helps to reconstruct image-aligned facial details on 3D meshes via gradient analysis. By exploiting the naturalness and diversity of 3D faces in our dataset, we demonstrate the usefulness of our dataset for 3D face-related tasks: improving the reconstruction accuracy of an existing 3D face reconstruction model and learning 3D facial motion prior. Code and datasets will be available at https://neuface-dataset.github.io.Comment: 9 pages, 7 figures, and 3 tables for the main paper. 8 pages, 6 figures and 3 tables for the appendi

    Composition and crystalline properties of TiNi thin films prepared by pulsed laser deposition under vacuum and in ambient Ar gas

    Get PDF
    TiNi shape memory alloy thin films were deposited using the pulsed laser deposition under vacuum and in an ambient Ar gas. Our main purpose is to investigate the influences of ambient Ar gas on the composition and the crystallization temperature of TiNi thin films. The deposited films were characterized by energy-dispersive X-ray spectrometry, a surface profiler, and X-ray diffraction at room temperature. In the case of TiNi thin films deposited in an ambient Ar gas, the compositions of the films were found to be very close to the composition of target when the substrate was placed at the shock front. The in-situ crystallization temperature (ca. 400°C) of the TiNi film prepared at the shock front in an ambient Ar gas was found to be lowered by ca. 100°C in comparison with that of a TiNi film prepared under vacuum

    LaughTalk: Expressive 3D Talking Head Generation with Laughter

    Full text link
    Laughter is a unique expression, essential to affirmative social interactions of humans. Although current 3D talking head generation methods produce convincing verbal articulations, they often fail to capture the vitality and subtleties of laughter and smiles despite their importance in social context. In this paper, we introduce a novel task to generate 3D talking heads capable of both articulate speech and authentic laughter. Our newly curated dataset comprises 2D laughing videos paired with pseudo-annotated and human-validated 3D FLAME parameters and vertices. Given our proposed dataset, we present a strong baseline with a two-stage training scheme: the model first learns to talk and then acquires the ability to express laughter. Extensive experiments demonstrate that our method performs favorably compared to existing approaches in both talking head generation and expressing laughter signals. We further explore potential applications on top of our proposed method for rigging realistic avatars.Comment: Accepted to WACV202

    PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPAR?? at Ser273

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPAR gamma at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPAR gamma at Ser273, the molecular mechanism of PPAR gamma dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPAR gamma phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPAR gamma at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders

    Exploiting Synthetic Data for Data Imbalance Problems: Baselines from a Data Perspective

    Full text link
    We live in a vast ocean of data, and deep neural networks are no exception to this. However, this data exhibits an inherent phenomenon of imbalance. This imbalance poses a risk of deep neural networks producing biased predictions, leading to potentially severe ethical and social consequences. To address these challenges, we believe that the use of generative models is a promising approach for comprehending tasks, given the remarkable advancements demonstrated by recent diffusion models in generating high-quality images. In this work, we propose a simple yet effective baseline, SYNAuG, that utilizes synthetic data as a preliminary step before employing task-specific algorithms to address data imbalance problems. This straightforward approach yields impressive performance on datasets such as CIFAR100-LT, ImageNet100-LT, UTKFace, and Waterbird, surpassing the performance of existing task-specific methods. While we do not claim that our approach serves as a complete solution to the problem of data imbalance, we argue that supplementing the existing data with synthetic data proves to be an effective and crucial preliminary step in addressing data imbalance concerns

    Carbon and nitrogen accumulation and decomposition from coarse woody debris in a naturally regenerated Korean red pine (pinus densiflora S. et Z.) forest

    Get PDF
    The contribution of coarse woody debris (CWD) to forest carbon (C) and nitrogen (N) dynamics is poorly quantified. This study quantified total C and N content in CWD and estimated the decomposition rates of CWD at different decay stages in a 70-year-old naturally regenerated Korean red pine forest (Pinus densiflora S. et Z.). The N concentration in CWD varied among species and decay classes (from 0.15% to 0.82%), and exhibited a decreasing pattern in C:N ratios with increasing decay class. Total CWD amounts of 4.84 Mg C ha−1, dominated by pine logs (45.4%) and decay class III (40.0%), contained total N of 20.48 kg N ha−1, which was approximately nine times the N input from annual tree mortality. In addition, this study demonstrated that the decay constant rate k was 0.2497 for needle litter, whereas k values were 0.0438, 0.0693, 0.1054, and 0.1947 for red pine CWD of decay class I, II, III, and IV, respectively. The decay rates were significantly related to wood density, N concentration, and C:N ratio across the decay classes of CWD. The results suggest that the C:N ratio of CWD is a key factor affecting its decomposition

    Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes.

    Get PDF
    Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration
    corecore