39 research outputs found

    Bispectral index and their relation with consciousness of the patients who receive desflurane or sevoflurane anesthesia during wake-up test for spinal surgery for correction

    Get PDF
    Background: Wake-up tests may be necessary during surgery for kypho-scoliosis to ensure that spinal function remains intact. It is difficult to predict the time when patients can respond to a verbal command. We evaluated the effectiveness of the bispectral index (BIS) and its relation to patients' levels of consciousness in wake-up tests during desflurane and sevoflurane anesthesia. Methods: Eighteen patients each were enrolled in the desflurane and sevoflurane groups for spinal correction surgery. We measured BIS values, blood pressure, heart rate, and consciousness state and time, at the points when patients responded during the wake-up test. Results: The BIS values when patients made fists upon a verbal command (T3) were 86.7 ± 7.5 for desflurane and 90.3 ± 5.4 for sevoflurane. Patients in the desflurane group had significantly shorter wake up delays than those in the sevoflurane group (6.9 ± 1.8 min vs. 11.8 ± 3.6 min). However, there was no difference between the groups in the time between the response to a verbal command and the time when a patient moved their toes in response to verbal commands. No recall of the wake-up tests occurred in either group. Conclusions: The values obtained using the BIS index could to some extent predict the time of a patient's and would be informative during desflurane and sevoflurane anesthesia. Moreover, desflurane permitted faster responses to verbal commands than sevoflurane, and allowed the wake-up test to be performed sooner

    Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study

    No full text
    BACKGROUND: The present study was undertaken to evaluate the potential of periodontal ligament stem cells (PDLSCs) and bone marrow SCs (BMSCs) on alveolar bone regeneration in a canine peri-implant defect model. METHODS: Four adult, male beagle dogs were used in this study. Autologous BMSCs from the iliac crests and PDLSCs from extracted teeth were cultured. Three months after extraction, BMSC- and PDLSC-loaded hydroxyapatite/beta-tricalcium phosphate (HA/TCP) (test groups) and cell-free HA/TCP (control group) were implanted in three rectangular, saddle-like peri-implant defects, respectively. The left side of the mandible was initially prepared, and after 8 weeks, the right side was also prepared. The animals were sacrificed after an 8-week healing period. Undecalcified ground sections were prepared. New bone formation and bone-to-implant contact (BIC) were measured histomorphometrically. BMSCs and PDLSCs were fluorescently labeled and traced. RESULTS: Alveolar bone regeneration in surgically created peri-implant saddle-like defects was more effective in test groups than the control group. The BMSC group had the highest new bone formation (34.99% and 40.17% at healing times of 8 and 16 weeks, respectively) followed by the PDLSC group (31.90% and 36.51%) and control group (23.13% and 28.36%), respectively. Test groups exhibited a significantly higher new bone formation than the control group at 8 weeks, but the same was true for only the BMSC group at 16 weeks (P <0.05). Fluorescently labeled cells were identified adjacent to HA/TCP carriers and, partly, near connective tissues and osteoids. CONCLUSION: This study demonstrated the feasibility of using stem cell-mediated bone regeneration to treat peri-implant defects.This work was supported by a Korea Science and Engineering Foundation grant (M10646010003- 08N4601-00310) funded by the Ministry of Science and Technology, Seoul, Korea

    Effect of combinatorial bone morphogenetic protein 2 and bone morphogenetic protein 7 gene delivery on osteoblastic differentiation

    Get PDF
    Purpose: Gene therapy (ex vivo) has recently been used as a means of delivering bone morphogenetic proteins (BMPs) to sites of tissue regeneration. In the present study, we investigated the effect of co-transduction of adenoviruses expressing BMP-2 and BMP-7 on osteogenesisof C2C12 cells in vitro. Methods: A replication-defective human adenovirus 5 (Ad5) containing a cDNA for BMPs in the E1 region of the virus (Ad5BMP-2 and Ad5BMP-7) was constructed by in vivo homologous recombination. Functional activity of Ad5BMP-2 and Ad5BMP-7 were evaluated in mouse stromal cells (W20-17cells). C2C12 cells are transduced with various MOI (multiplicity of infection) of Ad5BMP-2 and Ad5BMP-7 to assess most effective and stable titer. Based on this result, C2C12 cells were transduced with Ad5BMP-2 and Ad5BMP-7 alone or by combination. BMPs expression, alkaline phosphatase (ALPase) activity, cell proliferation, and mineralization were assessed. Results: Ad5BMP-2 and Ad5BMP-7 are successfully transduced to W20-17 cells, and secreted BMPs stimulated cell differentiation. Also, C2C12 cells transduced with Ad5BMPs showed expression of BMPs and increased ALPaseactivity. In all groups, cell proliferation was observed over times. At 7days, cells co-transduced with Ad5BMP-2 and Ad5BMP-7 showed lower proliferation than the others. C2C12 cells co-transduced with Ad5BMP-2 and Ad5BMP-7 had greater ALPaseactivity than that would be predicted if effect of individual Ad5BMPs were additive. Little mineralized nodule formation was detected in cells transduced with individual Ad5BMPs. In contrast, Ad5BMP-2 and Ad5BMP-7 combination stimulated mineralization after culturing for 10 days in mineralizing medium. Conclusions: Present study demonstrated that adenoviruses expressing BMPs gene successfully produced BMPs protein and these BMPs stimulated cells to be differentiated into osteoblastic cells. In addition, the osteogenic activity of Ad5BMPs can be synergistically increased by co-transduction of cells with Ad5BMP-2 and Ad5BMP-7.This work was supported by the Korea Science and Engingeering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. M10646010006-08N4601-00310)
    corecore