643 research outputs found

    Adsorptive removal of CO2 from CO2-CH4 mixture using cation-exchanged zeolites

    Get PDF
    Raw natural gas and landfill gas contains methane as its major component, but it also contains considerable amounts of contaminants such as CO2 and H2S (i.e. acid gases) that can cause corrosion and fouling of the pipeline and equipment during transportation and liquefaction. Amine-based CO2 gas removal processes have been employed in the gas industry, but these processes have disadvantages including high regeneration energy requirements and inefficiencies; these issues have not been adequately solved to date. Currently, adsorptive acid gas removal technologies have received significant interest because of the simplicity of adsorbent regeneration by thermal or pressure variation1). Numerous micro- and mesoporous adsorbents including zeolites [2-3], titanosilicates[4], activated carbons[5-6], metal-organic-framework (MOF) [7], and silica-alumina materials[8-9] were studied for this type of application. However, the CO2/CH4 selectivity of the aforementioned adsorbents was not high enough for commercial applications.In this study, different cation-exchanged zeolites were synthesized, physicochemically characterized, and evaluated for adsorptive removal of CO2 from CO2-CH4 mixtures. The adsorption isotherms of CO2 and CH4 in the pressure and temperature ranges 0 − 3MPa and 10 – 40 oC, respectively, for different cation-exchanged zeolites were measured and compared. The ideal-adsorbed solution theory (IAST) was employed for the estimation of CO2/CH4 selectivity for the different cation-exchanged zeolites. References 1) D. Aaron, C. Tsouris, Separ. Sci. Technol. 2005, 40, 321–348 2) J. Collins, US Patent No. 3,751,878. 1973. 3) M. W. Seery, US Patent No. 5,938,819. 1999 4) W. B. Dolan, M.J. Mitariten, US Patent No. 6,610,124 B1. 2003 5) A. Kapoor, R.T. Yang, Chem. Eng. Sci. 1989, 44, 1723–1733 6) A. Jayaraman, Chiao, A. S.; Padin, J.; Yang, R. T.; Munson, C. L., Separ. Sci. Technol. 2002 37, 2505–2528 7) L. Hamon, E. Jolimaitre, G. Pringruber , Ind. Eng. Chem. Res. 2010, 49, 7497-7503 8) W.B. Dolan, M.J. Mitariten, US patent No. 2003/0047071, 2003 9) G. Bellussi, P. Broccia, A. Carati, R. Millini, P. Pollesel, C. Rizzo, M. Tagliabue, Micropor. Mesopor. Mat., 2011, 146, 134–14

    Clinical and Radiological Manifestations of Osteogenesis Imperfecta Type V

    Get PDF
    We reviewed clinical manifestation of 12 patients from three Korean families. They showed mild to moderate bone fragility, and suggested an autosomal dominant inheritance pattern. Significant intrafamilial phenotype variability was obvious. Clinical, radiological, and histopathologic characteristics that distinguished this subtype from others include ossification of interosseous membrane of the forearm with radial head dislocation, hyperplastic callus formation, no evidence of type I collagenopathy and an abnormal histopathologic pattern. Severity of the interosseous membrane ossification was correlated with increasing age (p<0.01) and the radial head dislocation was thought to be a developmental problem rather than a congenital problem. Four children who had bisphosphonate treatment showed improved bone mineral density, radiological changes, and biochemical responses. Osteogenesis imperfecta type V was a distinctive subtype of osteogenesis imperfecta, which caused mild to moderate disability clinically

    Multimodality Imaging Can Help to Doubt, Diagnose and Follow-Up Cardiac Mass

    Get PDF
    Primary cardiac lymphoma is a very rare form of lymphoma primarily or mainly involving the heart, as in the two cases presented in this report. Various imaging modalities, including coronary computed tomography angiography, cardiac magnetic resonance imaging and positron emission tomography were useful for the characterization and diagnosis of cardiac mass. Pathologic confirmation was successful with endomyocardial biopsy under echocardiographic guidance, intra- and extracardiacally. In primary cardiac lymphoma, diagnosis using multiple modalities may be useful for mass characterization, and for response monitoring after chemotherapy

    Effects of insertion angle and implant thread type on the fracture properties of orthodontic mini-implants during insertion

    Get PDF
    Objective: To determine the effects of insertion angle (IA) and thread type on the fracture properties of orthodontic mini-implants (OMIs) during insertion. Materials and Methods: A total of 100 OMIs (self-drilling cylindrical; 11 mm in length) were allocated into 10 groups according to thread type (dual or single) and IA (0 degrees, 8 degrees, 13 degrees, 18 degrees, and 23 degrees) (n = 10 per group). The OMIs were placed into artificial materials simulating human tissues: two-layer bone blocks (Sawbones), root (polymethylmethacrylate stick), and periodontal ligament (Imprint-II Garant light-body). Maximum insertion torque (MIT), total insertion energy (TIE), and peak time (PT) were measured and analyzed statistically. Results: There were significant differences in MIT, TIE, and PT among the different IAs and threads (all P<.001). When IA increased, MIT increased in both thread groups. However, TIE and PT did not show significant differences among 0 degrees, 8 degrees, and 13 degrees IAs in the dual-thread group or 8 degrees, 13 degrees, and 18 degrees IAs in the single-thread group. The dual-thread groups showed higher MIT at all IAs, higher TIE at 0 degrees and 23 degrees IAs, and longer PT at a 23 degrees IA than the single-thread groups. In the 0 degrees, 8 degrees, and 13 degrees IA groups, none of the OMIs fractured or became deformed. However, in the 18 degrees IA group, all the OMIs were fractured or deformed. Dual-thread OMIs showed more fracturing than deformation compared to single-thread OMIs (P < .01). In the 23 degrees IA group, all OMIs penetrated the artificial root without fracturing and deformation. Conclusions: When OMIs contact artificial root at a critical contact angle, the deformation or fracture of OMIs can occur at lower MIT values than those of penetration.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/0000004298/8SEQ:8PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:0000004298ADJUST_YN:YEMP_ID:A072100DEPT_CD:852CITE_RATE:1.184FILENAME:조일식-백승학.pdfDEPT_NM:치의과학과SCOPUS_YN:YCONFIRM:

    EFFECTS OF LIQUID SWIRLING ON GAS-TO-LIQUID MASS TRANSFER IN THREE-PHASE FLUIDIZED BEDS

    Get PDF
    The swirling flow mode of liquid phase was adopted to promote the gas-to-liquid mass transfer in three-phase(gas-liquid-solid) fluidized beds. Effects of gas(0.01-0.09m/s) and liquid(0.035-0.172m/s) velocities, particle size(1.7-6.0mm) and swirling ratio of liquid phase(0-0.5) on the volumetric gas-to-liquid mass transfer coefficient in the bed were examined. The mass transfer coefficient increased up to 70% by adjusting the swirling flow of liquid phase, especially when the gas velocity is relatively low range. The value of gas-to-liquid mass transfer coefficient was well correlated in terms of dimensionless groups which were derived from the dimensional analysis on the mass transfer system

    A Novel Synthetic Method for N Doped TiO2 Nanoparticles Through Plasma-Assisted Electrolysis and Photocatalytic Activity in the Visible Region

    Get PDF
    Nitrogen doped TiO2 (N-TiO2) nanoparticles were synthesized via a novel plasma enhanced electrolysis method using bulk titanium (Ti) as a source material and nitric acid as the nitrogen dopant. This method possesses remarkable merits with regard to the direct-metal synthesis of nanoparticles with its one-step process, eco-friendliness, and its ability to be mass produced. The nanoparticles were synthesized from bulk Ti metal and dipped in 5–15 mmol of a nitric acid electrolyte under the application of AC 500 V, the minimum range of voltage to generate plasma. By controlling the electrolyte concentration, the nanoparticle size distribution could be tuned between 12.1 and 24.7 nm using repulsion forces via variations in pH. The prepared N-TiO2 nanoparticles were calcined at between 100 and 300°C to determine their photocatalytic efficiency within the visible-light region, which depended on their crystal structure and N doping content. Analysis showed that the temperature treatment yielded an anatase TiO2 crystalline structure when the N doping content was varied from 0.4 to 0.54 at.%. In particular, the 0.4 at.% N doped TiO2 catalyst exhibited the highest catalytic performance with quadruple efficiency compared to the P-25 standard TiO2 nanoparticles, which featured a 91% degradation of methyl orange organic dye within 300 min. This solid-liquid reaction based on plasma enhanced electrolysis could open new pathways with regard to high purity mass producible ceramic nanoparticles with advanced properties

    Blip-Up Blip-Down Circular EPI (BUDA-cEPI) for Distortion-Free dMRI with Rapid Unrolled Deep Learning Reconstruction

    Full text link
    Purpose: We implemented the blip-up, blip-down circular echo planar imaging (BUDA-cEPI) sequence with readout and phase partial Fourier to reduced off-resonance effect and T2* blurring. BUDA-cEPI reconstruction with S-based low-rank modeling of local k-space neighborhoods (S-LORAKS) is shown to be effective at reconstructing the highly under-sampled BUDA-cEPI data, but it is computationally intensive. Thus, we developed an ML-based reconstruction technique termed "BUDA-cEPI RUN-UP" to enable fast reconstruction. Methods: BUDA-cEPI RUN-UP - a model-based framework that incorporates off-resonance and eddy current effects was unrolled through an artificial neural network with only six gradient updates. The unrolled network alternates between data consistency (i.e., forward BUDA-cEPI and its adjoint) and regularization steps where U-Net plays a role as the regularizer. To handle the partial Fourier effect, the virtual coil concept was also incorporated into the reconstruction to effectively take advantage of the smooth phase prior, and trained to predict the ground-truth images obtained by BUDA-cEPI with S-LORAKS. Results: BUDA-cEPI with S-LORAKS reconstruction enabled the management of off-resonance, partial Fourier, and residual aliasing artifacts. However, the reconstruction time is approximately 225 seconds per slice, which may not be practical in a clinical setting. In contrast, the proposed BUDA-cEPI RUN-UP yielded similar results to BUDA-cEPI with S-LORAKS, with less than a 5% normalized root mean square error detected, while the reconstruction time is approximately 3 seconds. Conclusion: BUDA-cEPI RUN-UP was shown to reduce the reconstruction time by ~88x when compared to the state-of-the-art technique, while preserving imaging details as demonstrated through DTI application.Comment: Number: Figures: 8 Tables: 3 References: 7
    corecore