1,268 research outputs found

    Sensitivity of Redshift Distortion Measurements to Cosmological Parameters

    Get PDF
    The multipole moments of the power spectrum of large scale structure, observed in redshift space, are calculated for a finite sample volume including the effects of both the linear velocity field and geometry. A variance calculation is also performed including the effects of shot noise. The sensitivity with which a survey with the depth and geometry of the Sloan Digital Sky Survey (SDSS) can measure cosmological parameters Ω0\Omega_0 and b0b_0 (the bias) or λ0\lambda_0 (the cosmological constant) and b0b_0 is derived through fitting power spectrum moments to the large scale structure in the linear regime in a way which is independent of the evolution of the galaxy number density. We find that for surveys of the approximate depth of the SDSS no restrictions can be placed on Ω0\Omega_0 at the 99% confidence limit when a fiducial open, Ω0=0.3\Omega_0 = 0.3 model is assumed and bias is unconstrained. At the 95% limit, Ω0<.85\Omega_{0} < .85 is ruled out. Furthermore, for this fiducial model, both flat (cosmological constant) and open models are expected to reasonably fit the data. For flat, cosmological constant models with a fiducial Ω0=0.3\Omega_{0} = 0.3, we find that models with Ω0>0.48\Omega_{0} > 0.48 are ruled out at the 95% confidence limit regardless of the choice of the bias parameter, and open models cannot fit the data even at the 99% confidence limit.Comment: We correct an error which which caused us to overestimate the cosmic variance of our statistics. We also include shot noise in the new variace calculation. In our fitting proceedure, we now include σ\sigma, the non-linear velocity dispersion, as a free parameter. Our conclusions are modifed as a result, with Ω0=0.3\Omega_0=0.3 open models now nominaly excluding Ω0=1\Omega_0 = 1 at the 95% but not 99% confidence limi

    Power Spectrum of Velocity Fluctuations in the Universe

    Full text link
    We investigate the power spectrum of velocity fluctuations in the universe, V2(k)V^2(k), starting from four different measures of velocity: (1) the power spectrum of velocity fluctuations from peculiar velocities of galaxies; (2) the rms peculiar velocity of galaxy clusters; (3) the power spectrum of velocity fluctuations from the power spectrum of density fluctuations in the galaxy distribution; (4) and the bulk velocity from peculiar velocities of galaxies. We show that measures (1) and (2) are not consistent with each other and either the power spectrum from peculiar velocities of galaxies is overestimated or the rms cluster peculiar velocity is underestimated. The amplitude of velocity fluctuations derived from the galaxy distribution (measure 3) depends on the parameter β\beta. We estimate the parameter β\beta on the basis of measures (2) and (4). The power spectrum of velocity fluctuations from the galaxy distribution in the Stromlo-APM redshift survey is consistent with the observed rms cluster velocity and with the observed large-scale bulk flow when the parameter β\beta is in the range 0.4-0.5. In this case the value of the function V(k)V(k) at wavelength λ=120h1\lambda=120h^{-1}Mpc is 350\sim 350 km s1^{-1} and the rms amplitude of the bulk flow at the radius r=60h1r=60h^{-1} Mpc is 340\sim 340 km s1^{-1}. The velocity dispersion of galaxy systems originates mostly from the large-scale velocity fluctuations with wavelengths λ>100h1\lambda >100h^{-1} Mpc.Comment: Astrophysical Journal, Vol. 493, in press: 23 pages, uses AAS Latex, and 14 separate postscript figure

    The Power Spectrum of the PSC Redshift Survey

    Get PDF
    We measure the redshift-space power spectrum P(k) for the recently completed IRAS Point Source Catalogue (PSC) redshift survey, which contains 14500 galaxies over 84% of the sky with 60 micron flux >= 0.6 Jansky. Comparison with simulations shows that our estimated errors on P(k) are realistic, and that systematic errors due to the finite survey volume are small for wavenumbers k >~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between those of the earlier QDOT and 1.2 Jansky surveys, but with considerably smaller error bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like models using the Peacock-Dodds formula for non-linear evolution; the results are somewhat sensitive to the assumed small-scale velocity dispersion \sigma_V. Assuming a realistic \sigma_V \approx 300 km/s yields a shape parameter \Gamma ~ 0.25 and normalisation b \sigma_8 ~ 0.75; if \sigma_V is as high as 600 km/s then \Gamma = 0.5 is only marginally excluded. There is little evidence for any `preferred scale' in the power spectrum or non-Gaussian behaviour in the distribution of large-scale power.Comment: Latex, uses mn.sty, 14 pages including 11 Postscript figures. Accepted by MNRA

    The Bispectrum of IRAS Galaxies

    Full text link
    We compute the bispectrum for the galaxy distribution in the IRAS QDOT, 2Jy, and 1.2Jy redshift catalogs for wavenumbers 0.05<k<0.2 h/Mpc and compare the results with predictions from gravitational instability in perturbation theory. Taking into account redshift space distortions, nonlinear evolution, the survey selection function, and discreteness and finite volume effects, all three catalogs show evidence for the dependence of the bispectrum on configuration shape predicted by gravitational instability. Assuming Gaussian initial conditions and local biasing parametrized by linear and non-linear bias parameters b_1 and b_2, a likelihood analysis yields 1/b_1 = 1.32^{+0.36}_{-0.58}, 1.15^{+0.39}_{-0.39} and b_2/b_1^2=-0.57^{+0.45}_{-0.30}, -0.50^{+0.31}_{-0.51}, for the for the 2Jy and 1.2Jy samples, respectively. This implies that IRAS galaxies trace dark matter increasingly weakly as the density contrast increases, consistent with their being under-represented in clusters. In a model with chi^2 non-Gaussian initial conditions, the bispectrum displays an amplitude and scale dependence different than that found in the Gaussian case; if IRAS galaxies do not have bias b_1> 1 at large scales, \chi^2 non-Gaussian initial conditions are ruled out at the 95% confidence level. The IRAS data do not distinguish between Lagrangian or Eulerian local bias.Comment: 30 pages, 11 figure

    Contrasting alterations to synaptic and intrinsic properties in upper-cervical superficial dorsal horn neurons following acute neck muscle inflammation

    Get PDF
    Background: Acute and chronic pain in axial structures, like the back and neck, are difficult to treat, and have incidence as high as 15%. Surprisingly, most preclinical work on pain mechanisms focuses on cutaneous structures in the limbs and animal models of axial pain are not widely available. Accordingly, we developed a mouse model of acute cervical muscle inflammation and assessed the functional properties of superficial dorsal horn (SDH) neurons.&lt;p&gt;&lt;/p&gt; Results: Male C57/Bl6 mice (P24-P40) were deeply anaesthetised (urethane 2.2?g/kg i.p) and the rectus capitis major muscle (RCM) injected with 40??l of 2% carrageenan. Sham animals received vehicle injection and controls remained anaesthetised for 2?hrs. Mice in each group were sacrificed at 2?hrs for analysis. c-Fos staining was used to determine the location of activated neurons. c-Fos labelling in carrageenan-injected mice was concentrated within ipsilateral (87% and 63% of labelled neurons in C1 and C2 segments, respectively) and contralateral laminae I - II with some expression in lateral lamina V. c-Fos expression remained below detectable levels in control and sham animals. In additional experiments, whole cell recordings were obtained from visualised SDH neurons in transverse slices in the ipsilateral C1 and C2 spinal segments. Resting membrane potential and input resistance were not altered. Mean spontaneous EPSC amplitude was reduced by ~20% in neurons from carrageenan-injected mice versus control and sham animals (20.63???1.05 vs. 24.64???0.91 and 25.87???1.32 pA, respectively). The amplitude (238???33 vs. 494???96 and 593???167 pA) and inactivation time constant (12.9???1.5 vs. 22.1???3.6 and 15.3???1.4?ms) of the rapid A type potassium current (IAr), the dominant subthreshold current in SDH neurons, were reduced in carrageenan-injected mice.&lt;p&gt;&lt;/p&gt; Conclusions: Excitatory synaptic drive onto, and important intrinsic properties (i.e., IAr) within SDH neurons are reduced two hours after acute muscle inflammation. We propose this time point represents an important transition period between peripheral and central sensitisation with reduced excitatory drive providing an initial neuroprotective mechanism during the early stages of the progression towards central sensitisation

    Is the Lambda CDM Model Consistent with Observations of Large-Scale Structure?

    Full text link
    The claim that large-scale structure data independently prefers the Lambda Cold Dark Matter model is a myth. However, an updated compilation of large-scale structure observations cannot rule out Lambda CDM at 95% confidence. We explore the possibility of improving the model by adding Hot Dark Matter but the fit becomes worse; this allows us to set limits on the neutrino mass.Comment: To appear in Proceedings of "Sources and Detection of Dark Matter/Energy in the Universe", ed. D. B. Cline. 6 pages, including 2 color figure
    corecore