1,106 research outputs found
Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems
The purpose of this paper is to achieve more versatile, convenient stability criteria for a wide class of finite-difference approximations to initial boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter-plane x greater than or equal to 0, t greater than or equal to 0. With these criteria, stability is easily established for a large number of examples, thus incorporating and generalizing many of the cases studied in recent literature
Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems
New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditions, thus generalizing many special cases studied in recent literature
An Analysis of the Quasicontinuum Method
The aim of this paper is to present a streamlined and fully three-dimensional
version of the quasicontinuum (QC) theory of Tadmor et al. and to analyze its
accuracy and convergence characteristics. Specifically, we assess the effect of
the summation rules on accuracy; we determine the rate of convergence of the
method in the presence of strong singularities, such as point loads; and we
assess the effect of the refinement tolerance, which controls the rate at which
new nodes are inserted in the model, on the development of dislocation
microstructures.Comment: 30 pages, 16 figures. To appear in Jornal of the Mechanics and
Physics of Solid
Nanoindentation and incipient plasticity
This paper presents a large-scale atomic resolution simulation of nanoindentation into a thin aluminum film using the recently introduced quasicontinuum method. The purpose of the simulation was to study the initial stages of plastic deformation under the action of an indenter. Two different crystallographic orientations of the film and two different indenter geometries (a rectangular prism and a cylinder) were studied. We obtained both macroscopic load versus indentation depth curves, as well as microscopic quantities, such as the Peierls stress and density of geometrically necessary dislocations beneath the indenter. In addition, we obtain detailed information regarding the atomistic mechanisms responsible for the macroscopic curves. A strong dependence on geometry and orientation is observed. Two different microscopic mechanisms are observed to accommodate the applied loading: (i) nucleation and subsequent propagation into the bulk of edge dislocation dipoles and (ii) deformation twinning
Quasicontinuum simulation of fracture at the atomic scale
We study the problem of atomic scale fracture using the recently developed quasicontinuum method in which there is a systematic thinning of the atomic-level degrees of freedom in regions where they are not needed. Fracture is considered in two distinct settings. First, a study is made of cracks in single crystals, and second, we consider a crack advancing towards a grain boundary (GB) in its path. In the investigation of single crystal fracture, we evaluate the competition between simple cleavage and crack-tip dislocation emission. In addition, we examine the ability of analytic models to correctly predict fracture behaviour, and find that the existing analytical treatments are too restrictive in their treatment of nonlinearity near the crack tip. In the study of GB-crack interactions, we have found a number of interesting deformation mechanisms which attend the advance of the crack. These include the migration of the GB, the emission of dislocations from the GB, and deflection of the crack front along the GB itself. In each case, these mechanisms are rationalized on the basis of continuum mechanics arguments
Origin of the structural phase transition in Li7La3Zr2O12
Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte material with a
low-conductivity tetragonal and a high-conductivity cubic phase. Using
density-functional theory and variable cell shape molecular dynamics
simulations, we show that the tetragonal phase stability is dependent on a
simultaneous ordering of the Li ions on the Li sublattice and a
volume-preserving tetragonal distortion that relieves internal structural
strain. Supervalent doping introduces vacancies into the Li sublattice,
increasing the overall entropy and reducing the free energy gain from ordering,
eventually stabilizing the cubic phase. We show that the critical temperature
for cubic phase stability is lowered as Li vacancy concentration (dopant level)
is raised and that an activated hop of Li ions from one crystallographic site
to another always accompanies the transition. By identifying the relevant
mechanism and critical concentrations for achieving the high conductivity
phase, this work shows how targeted synthesis could be used to improve
electrolytic performance
Finite-Temperature Quasicontinuum: Molecular Dynamics without All the Atoms
Using a combination of statistical mechanics and finite-element interpolation, we develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasicontinuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter
Quasicontinuum Models of Interfacial Structure and Deformation
Microscopic models of the interaction between grain boundaries (GBs) and both
dislocations and cracks are of importance in understanding the role of
microstructure in altering the mechanical properties of a material. A recently
developed mixed atomistic and continuum method is extended to examine the
interaction between GBs, dislocations and cracks. These calculations elucidate
plausible microscopic mechanisms for these defect interactions and allow for
the quantitative evaluation of critical parameters such as the stress to
nucleate a dislocation at a step on a GB and the force needed to induce GB
migration.Comment: RevTex, 4 pages, 4 figure
- …