301 research outputs found

    Convenient total variation diminishing conditions for nonlinear difference schemes

    Get PDF
    Convenient conditions for nonlinear difference schemes to be total-variation diminishing (TVD) are reviewed. It is shown that such schemes share the TVD property, provided their numerical fluxes meet a certain positivity condition at extrema values but can be arbitrary otherwise. The conditions are invariant under different incremental representations of the nonlinear schemes, and thus provide a simplified generalization of the TVD conditions due to Harten and others

    The convergence of spectral methods for nonlinear conservation laws

    Get PDF
    The convergence of the Fourier method for scalar nonlinear conservation laws which exhibit spontaneous shock discontinuities is discussed. Numerical tests indicate that the convergence may (and in fact in some cases must) fail, with or without post-processing of the numerical solution. Instead, a new kind of spectrally accurate vanishing viscosity is introduced to augment the Fourier approximation of such nonlinear conservation laws. Using compensated compactness arguments, it is shown that this spectral viscosity prevents oscillations, and convergence to the unique entropy solution follows

    Local error estimates for discontinuous solutions of nonlinear hyperbolic equations

    Get PDF
    Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes

    Detection of Edges in Spectral Data II. Nonlinear Enhancement

    Get PDF
    We discuss a general framework for recovering edges in piecewise smooth functions with finitely many jump discontinuities, where [f](x):=f(x+)f(x)0[f](x):=f(x+)-f(x-) \neq 0. Our approach is based on two main aspects--localization using appropriate concentration kernels and separation of scales by nonlinear enhancement. To detect such edges, one employs concentration kernels, Kϵ()K_\epsilon(\cdot), depending on the small scale ϵ\epsilon. It is shown that odd kernels, properly scaled, and admissible (in the sense of having small W1,W^{-1,\infty}-moments of order O(ϵ){\cal O}(\epsilon)) satisfy Kϵf(x)=[f](x)+O(ϵ)K_\epsilon*f(x) = [f](x) +{\cal O}(\epsilon), thus recovering both the location and amplitudes of all edges.As an example we consider general concentration kernels of the form KNσ(t)=σ(k/N)sinktK^\sigma_N(t)=\sum\sigma(k/N)\sin kt to detect edges from the first 1/ϵ=N1/\epsilon=N spectral modes of piecewise smooth f's. Here we improve in generality and simplicity over our previous study in [A. Gelb and E. Tadmor, Appl. Comput. Harmon. Anal., 7 (1999), pp. 101-135]. Both periodic and nonperiodic spectral projections are considered. We identify, in particular, a new family of exponential factors, σexp()\sigma^{exp}(\cdot), with superior localization properties. The other aspect of our edge detection involves a nonlinear enhancement procedure which is based on separation of scales between the edges, where Kϵf(x)[f](x)0K_\epsilon*f(x)\sim [f](x) \neq 0, and the smooth regions where Kϵf=O(ϵ)0K_\epsilon*f = {\cal O}(\epsilon) \sim 0. Numerical examples demonstrate that by coupling concentration kernels with nonlinear enhancement one arrives at effective edge detectors

    Critical Thresholds in 2D Restricted Euler-Poisson Equations

    Get PDF
    We provide a complete description of the critical threshold phenomena for the two-dimensional localized Euler-Poisson equations, introduced by the authors in [Liu & Tadmor, Comm. Math Phys., To appear]. Here, the questions of global regularity vs. finite-time breakdown for the 2D Restricted Euler-Poisson solutions are classified in terms of precise explicit formulae, describing a remarkable variety of critical threshold surfaces of initial configurations. In particular, it is shown that the 2D critical thresholds depend on the relative size of three quantities: the initial density, the initial divergence as well as the initial spectral gap, that is, the difference between the two eigenvalues of the 2×22 \times 2 initial velocity gradient

    Recovery of edges from spectral data with noise -- a new perspective

    Get PDF
    We consider the problem of detecting edges in piecewise smooth functions from their N-degree spectral content, which is assumed to be corrupted by noise. There are three scales involved: the "smoothness" scale of order 1/N, the noise scale of order η\eta and the O(1) scale of the jump discontinuities. We use concentration factors which are adjusted to the noise variance, η\eta >> 1/N, in order to detect the underlying O(1)-edges, which are separated from the noise scale, η\eta << 1
    corecore