52 research outputs found

    Taking snapshots of the jet-ISM interplay with ALMA

    Get PDF
    We present an update of our on-going project to characterise the impact of radio jets on the ISM by tracing molecular gas at high spatial resolution using ALMA. The radio active galactic nuclei (AGN) studied show recently born radio jets. In this stage, the plasma jets can have the largest impact on the ISM, as also predicted by state-of-the-art simulations. The two targets have quite different ages, allowing us to get snapshots of the effects of radio jets as they grow. Interestingly, both also host powerful quasar emission. The largest mass outflow rate of molecular gas is found in a radio galaxy hosting a newly born radio jet emerging from an obscuring cocoon of gas and dust. Although the mass outflow rate is high (few hundred Msun/yr), the outflow is limited to the inner few hundred pc region. In a second object, the jet is larger (a few kpc) and is in a more advanced evolutionary phase. In this object, the distribution of the molecular gas is reminiscent of what is seen, on larger scales, in cool-core clusters hosting radio galaxies. Gas deviating from quiescent kinematics is not very prominent, limited only to the very inner region, and has a low mass outflow rate. Instead, on kpc scales, the radio lobes appear associated with depressions in the distribution of the molecular gas, suggesting they have broken out from the dense nuclear region. The AGN does not appear to be able at present to stop the star formation observed in this galaxy. These results suggest that the effects of the radio source start in the first phases by producing outflows which, however, tend to be limited to the kpc region. After that, the effects turn into producing large-scale bubbles which could, in the long term, prevent the surrounding gas from cooling. Our results characterise the effect of radio jets in different phases of their evolution, bridging the studies done for radio galaxies in clusters.Comment: 5 Pages 2 figures; Proceedings IAU Symposium No. 359, "Galaxy evolution and feedback across different environments", T. Storchi-Bergmann, R. Overzier, W. Forman & R. Riffel, ed

    The location and impact of jet-driven outflows of cold gas: the case of 3C293

    Get PDF
    The nearby radio galaxy 3C293 is one of a small group of objects where extreme outflows of neutral hydrogen have been detected. However, due to the limited spatial resolution of previous observations, the exact location of the outflow was not able to be determined. In this letter, we present new higher resolution VLA observations of the central regions of this radio source and detect a fast outflow of HI with a FWZI velocity of \Delta v~1200 km/s associated with the inner radio jet, approximately 0.5 kpc west of the central core. We investigate possible mechanisms which could produce the observed HI outflow and conclude that it is driven by the radio-jet. However, this outflow of neutral hydrogen is located on the opposite side of the nucleus to the outflow of ionised gas previously detected in this object. We calculate a mass outflow rate in the range of 8-50 solar masses/yr corresponding to a kinetic energy power injected back into the ISM of 1.38x10^{42} - 1.00x10^{43} erg/s or 0.01 - 0.08 percent of the Eddington luminosity. This places it just outside the range required by some galaxy evolution simulations for negative feedback from the AGN to be effective in halting star-formation within the galaxy.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    BeppoSAX Observations of 2 Jy Lobe-dominated Broad-Line Sources: the Discovery of a Hard X-ray Component

    Get PDF
    We present new BeppoSAX LECS, MECS, and PDS observations of five lobe-dominated, broad-line active galactic nuclei selected from the 2 Jy sample of southern radio sources. These include three radio quasars and two broad-line radio galaxies. ROSAT PSPC data, available for all the objects, are also used to better constrain the spectral shape in the soft X-ray band. The collected data cover the 0.1 - 10 keV energy range, reaching 40 keV for one source. Detailed spectral fitting shows that all sources have a flat hard X-ray spectrum with energy index alpha_x ~ 0.75 in the 2 - 10 keV energy range. This is a new result, which is at variance with the situation at lower energies where these sources exhibit steeper spectra. Spectral breaks ~0.5 at 1 - 2 keV characterize the overall X-ray spectra of our objects. The flat, high-energy slope is very similar to that displayed by flat-spectrum/core-dominated quasars, which suggests that the same emission mechanism (most likely inverse Compton) produces the hard X-ray spectra in both classes. Contrary to the optical evidence for some of our sources, no absorption above the Galactic value is found in our sample. Finally, a (weak) thermal component is also present at low energies in the two broad-line radio galaxies included in our study.Comment: 4 pages, LateX, 3 figures. Uses espcrc2.sty. To appear in: "The Active X-ray Sky: Results from BeppoSAX and Rossi-XTE", Rome, Italy, 21-24 October, 1997, Eds.: L. Scarsi, H. Bradt, P. Giommi and F. Fior

    Outflow densities and ionisation mechanisms in the NLRs of the prototypical Seyfert galaxies NGC 1068 and NGC 4151

    Get PDF
    Despite being thought to play an important role in galaxy evolution, the true impact of outflows driven by active galactic nuclei (AGN) on their host galaxies is unclear. In part, this may be because electron densities of outflowing gas are often underestimated: recent studies that use alternative diagnostics have measured much higher densities than those from commonly used techniques, and consequently find modest outflow masses and kinetic powers. Furthermore, outflow ionisation mechanisms - which are often used to probe acceleration mechanisms - are also uncertain. To address these issues, we have analysed archival HST/STIS spectra of the inner regions (r<160pc) of the nearby prototypical Seyfert galaxies NGC 1068 and NGC 4151, which show evidence of warm-ionised outflows driven by the central AGN. We derive high electron densities (103.610^{3.6}<nen_e<104.810^{4.8}cm−3^{-3}) using the transauroral [OII] and [SII] emission lines ratios for the first time with spatially-resolved observations. Moreover, we find evidence that the gas along the radio axis in NGC 1068 has a significant AGN-photoionised matter-bounded component, and there is evidence for shock-ionisation and/or radiation-bounded AGN-photoionisation along the radio axis in NGC 4151. We also note that the outflow extents are similar to those of the radio structures, consistent with acceleration by jet-induced shocks. Taken together, our investigation demonstrates the diversity of physical and ionisation conditions in the narrow line regions of Seyfert galaxies, and hence reinforces the need for robust diagnostics of outflowing gas densities and ionisation mechanisms.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    HI on large and small scales in starburst radio galaxies

    Get PDF
    The study of the optical continuum of radio galaxies shows that about 30% have a young stellar population component. Among them are the most far-IR bright radio galaxies. A further indication of the relatively gas rich environment of these galaxies (possibly related to the recent merger from which they originate) is the high fraction being detected in HI. Here we present recent results obtained from the study of neutral hydrogen (detected either in emission or absorption) in a group of starburst radio galaxies. In some objects, large-scale (tens of kpc) structures involving HI masses exceeding 10^9 M_sun are observed. In these cases, the HI can be used to study the origin and evolution of these systems and the timescales involved. In this respect, the parameters obtained from the study of the stellar populations and from the HI can be complementary. In other objects, very broad (> 1000 km/s), mostly blueshifted HI is detected in absorption. This result shows that, despite the extremely energetic phenomena occurring near an AGN - including the powerful radio jet - some of the outflowing gas remains, or becomes again, neutral. This can give new and important insights in the physical conditions of the gaseous medium around an AGN. The possible origin of the extreme kinematics is discussed.Comment: Invited review to appear in the proceedings of the conference "Neutral ISM in Starburst Galaxies", eds. S.Aalto, S.Huttemeister & A.Pedlar. 12 pages, Figs.2,4,5 are in separate gif files. The full paper with high resolution images can be downloaded from http://www.nfra.nl/~morganti/Papers/starburst.ps.g
    • 

    corecore