40 research outputs found

    Structural and functional analyses of the Arg-Gly-Asp sequence introduced into human lysozyme

    Get PDF
    This research was originally published in the Journal of Biological Chemistry. T Yamada, M Matsushima, K Inaka, T Ohkubo, A Uyeda, T Maeda, K Titani, K Sekiguchi and M Kikuchi. Structural and functional analyses of the Arg-Gly-Asp sequence introduced into human lysozyme. J. Biol. Chem. 1993; 268: 10588-10592 © the American Society for Biochemistry and Molecular Biolog

    Cloning, expression, crystallization and preliminary X-ray crystallographic analysis of a human condensin SMC2 hinge domain with short coiled coils

    Full text link
    Kawahara, K., Nakamura, S., Katsu, Y., Motooka, D., Hosokawa, Y., Kojima, Y., Matsukawa, K., Takinowaki, H., Uchiyama, S., Kobayashi, Y., Fukui, K. & Ohkubo, T. (2010). Acta Cryst. F66, 1067-1070

    Structural and functional insights into thermally stable cytochrome c' from a thermophile

    Get PDF
    Thermophilic Hydrogenophilus thermoluteolus cytochrome c0 (PHCP) exhibits higher thermal stability than a mesophilic counterpart, Allochromatium vinosum cytochrome c0 (AVCP), which has a homo-dimeric structure and ligand-binding ability. To understand the thermal stability mechanism and ligand-binding ability of the thermally stable PHCP protein, the crystal structure of PHCP was first determined. It formed a homo-dimeric structure, the main chain root mean square deviation (rmsd) value between PHCP and AVCP being 0.65 A ° . In the PHCP structure, six specific residues appeared to strengthen the heme-related and subunit–subunit interactions, which were not conserved in the AVCP structure. PHCP variants having altered subunit–subunit interactions were more severely destabilized than ones having altered heme-related interactions. The PHCP structure further revealed a ligand-binding channel and a penta-coordinated heme, as observed in the AVCP protein. A spectroscopic study clearly showed that some ligands were bound to the PHCP protein. It is concluded that the dimeric PHCP from the thermophile is effectively stabilized through heme-related and subunit–subunit interactions with conservation of the ligand-binding ability.This work was performed under the Cooperative Research Program of the “Network Joint Research Center for Materials and Devices”

    The middle region of an HP1-binding protein, HP1-BP74, associates with linker DNA at the entry/exit site of nucleosomal DNA

    Get PDF
    Kayoko Hayashihara, Susumu Uchiyama, Shigeru Shimamoto, Shouhei Kobayashi, Miroslav Tomschik, Hidekazu Wakamatsu, Daisuke No, Hiroki Sugahara, Naoto Hori, Masanori Noda, Tadayasu Ohkubo, Jordanka Zlatanova, Sachihiro Matsunaga, Kiichi Fukui. The Middle Region of an HP1-binding Protein, HP1-BP74, Associates with Linker DNA at the Entry/Exit Site of Nucleosomal DNA. Journal of Biological Chemistry, Volume 285, Issue 9, 2010, Pages 6498-6507. https://doi.org/10.1074/jbc.M109.092833

    Structural basis for dimer formation of human condensin structural maintenance of chromosome proteins and its implications for single-stranded DNA recognition

    Get PDF
    Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.Susumu Uchiyama, Kazuki Kawahara, Yuki Hosokawa, Shunsuke Fukakusa, Hiroya Oki, Shota Nakamura, Yukiko Kojima, Masanori Noda, Rie Takino, Yuya Miyahara, Takahiro Maruno, Yuji Kobayashi, Tadayasu Ohkubo, Kiichi Fukui. Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition. Journal of Biological Chemistry, Volume 290, Issue 49, 2015, Pages 29461-29477. https://doi.org/10.1074/jbc.M115.670794

    Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds

    Get PDF
    Harada, S., Hiromori, Y., Nakamura, S. et al. Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds. Sci Rep 5, 8520 (2015). https://doi.org/10.1038/srep08520

    Crystallization of human nicotinamide phosphoribosyltransferase

    No full text
    Human nicotinamide phosphoribosyltransferase has been crystallized using microseeding methods and X-ray diffraction data have been collected at 2.0 Å resolution
    corecore