167 research outputs found

    Long-term power-law fluctuation in Internet traffic

    Get PDF
    Power-law fluctuation in observed Internet packet flow are discussed. The data is obtained by a multi router traffic grapher (MRTG) system for 9 months. The internet packet flow is analyzed using the detrended fluctuation analysis. By extracting the average daily trend, the data shows clear power-law fluctuations. The exponents of the fluctuation for the incoming and outgoing flow are almost unity. Internet traffic can be understood as a daily periodic flow with power-law fluctuations.Comment: 10 pages, 8 figure

    Phase Diagram Of The Biham-Middleton-Levine Traffic Model In Three Dimensions

    Get PDF
    We study numerically the behavior of the Biham-Middleton-Levine traffic model in three dimensions. Our extensive numerical simulations show that the phase diagram for this model in three dimensions is markedly different from that in one and two dimensions. In addition to the full speed moving as well as the completely jamming phases, whose respective average asymptotic car speeds equal one and zero, we observe an extensive region of car densities ρ\rho with a low but non-zero average asymptotic car speed. The transition from this extensive low average asymptotic car speed region to the completely jamming region is at least second order. We argue that this low speed region is a result of the formation of a spatially-limited-extended percolating cluster. Thus, this low speed phase is present in n>3n > 3 dimensional Biham-Middleton-Levine model as well.Comment: Minor clarifications, 1 figure adde

    Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods

    Full text link
    We propose a cellular automata model for vehicular traffic in cities by combining (and appropriately modifying) ideas borrowed from the Biham-Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg (NS) model of highway traffic. We demonstrate a phase transition from the "free-flowing" dynamical phase to the completely "jammed" phase at a vehicle density which depends on the time periods of the synchronized signals and the separation between them. The intrinsic stochasticity of the dynamics, which triggers the onset of jamming, is similar to that in the NS model, while the phenomenon of complete jamming through self-organization as well as the final jammed configurations are similar to those in the BML model. Using our new model, we have made an investigation of the time-dependence of the average speeds of the cars in the "free-flowing" phase as well as the dependence of flux and jamming on the time period of the signals.Comment: 4 pages, REVTEX, 4 eps figures include

    SXDF-UDS-CANDELS-ALMA 1.5 arcmin2^2 deep survey

    Full text link
    We have conducted 1.1 mm ALMA observations of a contiguous 105×50105'' \times 50'' or 1.5 arcmin2^2 window in the SXDF-UDS-CANDELS. We achieved a 5σ\sigma sensitivity of 0.28 mJy, providing a flat sensus of dusty star-forming galaxies with LIR6×1011L_{\rm IR} \sim6\times10^{11} LL_\odot (for TdustT_{\rm dust} =40K) up to z10z\sim10 thanks to the negative K-correction at this wavelength. We detected 5 brightest sources (S/N>>6) and 18 low-significance sources (5>>S/N>>4; these may contain spurious detections, though). One of the 5 brightest ALMA sources (S1.1mm=0.84±0.09S_{\rm 1.1mm} = 0.84 \pm 0.09 mJy) is extremely faint in the WFC3 and VLT/HAWK-I images, demonstrating that a contiguous ALMA imaging survey is able to uncover a faint dust-obscured population that is invisible in deep optical/near-infrared surveys. We found a possible [CII]-line emitter at z=5.955z=5.955 or a low-zz CO emitting galaxy within the field, which may allow us to constrain the [CII] and/or the CO luminosity functions across the history of the universe.Comment: 4 pages, 2 figures, 1 table, to appear in the proceedings of IAU Symposium 319 "Galaxies at High Redshift and Their Evolution over Cosmic Time", eds. S. Kaviraj & H. Ferguso

    Integer Quantum Hall Effect with Realistic Boundary Condition : Exact Quantization and Breakdown

    Full text link
    A theory of integer quantum Hall effect(QHE) in realistic systems based on von Neumann lattice is presented. We show that the momentum representation is quite useful and that the quantum Hall regime(QHR), which is defined by the propagator in the momentum representation, is realized. In QHR, the Hall conductance is given by a topological invariant of the momentum space and is quantized exactly. The edge states do not modify the value and topological property of σxy\sigma_{xy} in QHR. We next compute distribution of current based on effective action and find a finite amount of current in the bulk and the edge, generally. Due to the Hall electric field in the bulk, breakdown of the QHE occurs. The critical electric field of the breakdown is proportional to B3/2B^{3/2} and the proportional constant has no dependence on Landau levels in our theory, in agreement with the recent experiments.Comment: 48 pages, figures not included, some additions and revision

    Macroscopic traffic models from microscopic car-following models

    Full text link
    We present a method to derive macroscopic fluid-dynamic models from microscopic car-following models via a coarse-graining procedure. The method is first demonstrated for the optimal velocity model. The derived macroscopic model consists of a conservation equation and a momentum equation, and the latter contains a relaxation term, an anticipation term, and a diffusion term. Properties of the resulting macroscopic model are compared with those of the optimal velocity model through numerical simulations, and reasonable agreement is found although there are deviations in the quantitative level. The derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.

    Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic

    Full text link
    We study the impact of global traffic light control strategies in a recently proposed cellular automaton model for vehicular traffic in city networks. The model combines basic ideas of the Biham-Middleton-Levine model for city traffic and the Nagel-Schreckenberg model for highway traffic. The city network has a simple square lattice geometry. All streets and intersections are treated equally, i.e., there are no dominant streets. Starting from a simple synchronized strategy we show that the capacity of the network strongly depends on the cycle times of the traffic lights. Moreover we point out that the optimal time periods are determined by the geometric characteristics of the network, i.e., the distance between the intersections. In the case of synchronized traffic lights the derivation of the optimal cycle times in the network can be reduced to a simpler problem, the flow optimization of a single street with one traffic light operating as a bottleneck. In order to obtain an enhanced throughput in the model improved global strategies are tested, e.g., green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure

    Intelligent Controlling Simulation of Traffic Flow in a Small City Network

    Full text link
    We propose a two dimensional probabilistic cellular automata for the description of traffic flow in a small city network composed of two intersections. The traffic in the network is controlled by a set of traffic lights which can be operated both in fixed-time and a traffic responsive manner. Vehicular dynamics is simulated and the total delay experienced by the traffic is evaluated within specified time intervals. We investigate both decentralized and centralized traffic responsive schemes and in particular discuss the implementation of the {\it green-wave} strategy. Our investigations prove that the network delay strongly depends on the signalisation strategy. We show that in some traffic conditions, the application of the green-wave scheme may destructively lead to the increment of the global delay.Comment: 8 pages, 10 eps figures, Revte

    Experimental study of pedestrian flow through a bottleneck

    Get PDF
    In this work the results of a bottleneck experiment with pedestrians are presented in the form of total times, fluxes, specific fluxes, and time gaps. A main aim was to find the dependence of these values from the bottleneck width. The results show a linear decline of the specific flux with increasing width as long as only one person at a time can pass, and a constant value for larger bottleneck widths. Differences between small (one person at a time) and wide bottlenecks (two persons at a time) were also found in the distribution of time gaps.Comment: accepted for publication in J. Stat. Mec
    corecore