51 research outputs found

    Changes in the intra- and peri-cellular sclerostin distribution in lacuno-canalicular system induced by mechanical unloading

    Get PDF
    Introduction Mechanical stimuli regulate Sclerostin (Scl), a negative regulator of bone formation, expression in osteocytes. However, the detailed Scl distribution in osteocytes in response to mechanical unloading remains unclear. Materials and methods Twelve-week-old male rats were used. The sciatic and femoral nerves on the right side were excised as mechanical unloading treatment. A sham operation was performed on the left side. One week after neurotrauma, the bone density of the femora was evaluated by peripheral quantitative computed tomography, and immunofluorescence was performed in coronal sections of the femoral diaphysis. The mean fluorescence intensity and fluorescent profile of Scl from the marrow to the periosteal side were analyzed to estimate the Scl expression and determine to which side (marrow or periosteal) the Scl prefers to distribute in response to mechanical unloading. The most sensitive region indicated by the immunofluorescence results was further investigated by transmission electron microscopy (TEM) with immunogold staining to show the Scl expression changes in different subcellular structures. Results In femur distal metaphysis, neurotrauma-induced mechanical unloading significantly decreased the bone density, made the distribution of Scl closer to the marrow on the anterior and medial side, and increased the Scl expression only on the lateral side. TEM findings showed that only the expression of Scl in canaliculi was increased by mechanical unloading. Conclusions Our results showed that even short-term mechanical unloading is enough to decrease bone density, and mechanical unloading not only regulated the Scl expression but also changed the Scl distribution in both the osteocyte network and subcellular structures

    Bundling of collagen fibrils influences osteocyte network formation during bone modeling

    Get PDF
    Osteocytes form a cellular network by gap junctions between their cell processes. This network is important since intercellular communication via the network is essential for bone metabolism. However, the factors that influence the formation of this osteocyte network remain unknown. As the early stage of osteocyte network formation occurs on the bone surface, we observed a newly formed trabecular bone surface by orthogonal focused ion beam-scanning electron microscopy. The embedding late osteoblast processes tended to avoid bundled collagen fibrils and elongate into sparse collagen fibrils. Then, we examined whether the inhibition of bundling of collagen fibrils using a potent lysyl oxidase inhibitor, beta-aminopropionitrile (BAPN) changed the cellular network of the chick calvaria. The osteocyte shape of the control group was spindle-shape, while that of the BAPN group was sphere-shaped. In addition, the osteocyte processes of the control group were elongated vertically to the long axis of the cell body, whereas the osteocyte processes of the BAPN group were elongated radially. Therefore, it was suggested that the bundling of collagen fibrils influences normal osteocyte network formation during bone modeling

    The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes

    Get PDF
    Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with alpha-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs

    Shedding quantitative fluorescence light on novel regulatory mechanisms in skeletal biomedicine and biodentistry

    Get PDF
    SummaryDigitalized fluorescence images contain numerical information such as color (wavelength), fluorescence intensity and spatial position. However, quantitative analyses of acquired data and their validation remained to be established. Our research group has applied quantitative fluorescence imaging on tissue sections and uncovered novel findings in skeletal biomedicine and biodentistry. This review paper includes a brief background of quantitative fluorescence imaging and discusses practical applications by introducing our previous research. Finally, the future perspectives of quantitative fluorescence imaging are discussed

    bHLH proteins and their role in somitogenesis

    No full text

    Raman Spectroscopic Analysis to Detect Reduced Bone Quality after Sciatic Neurectomy in Mice

    No full text
    Bone mineral density (BMD) is a commonly used diagnostic indicator for bone fracture risk in osteoporosis. Along with low BMD, bone fragility accounts for reduced bone quality in addition to low BMD, but there is no diagnostic method to directly assess the bone quality. In this study, we investigated changes in bone quality using the Raman spectroscopic technique. Sciatic neurectomy (NX) was performed in male C57/BL6J mice (NX group) as a model of disuse osteoporosis, and sham surgery was used as an experimental control (Sham group). Eight months after surgery, we acquired Raman spectral data from the anterior cortical surface of the proximal tibia. We also performed a BMD measurement and micro-CT measurement to investigate the pathogenesis of osteoporosis. Quantitative analysis based on the Raman peak intensities showed that the carbonate/phosphate ratio and the mineral/matrix ratio were significantly higher in the NX group than in the Sham group. There was direct evidence of alterations in the mineral content associated with mechanical properties of bone. To fully understand the spectral changes, we performed principal component analysis of the spectral dataset, focusing on the matrix content. In conclusion, Raman spectroscopy provides reliable information on chemical changes in both mineral and matrix contents, and it also identifies possible mechanisms of disuse osteoporosis

    A quantitative analysis of bone lamellarity and bone collagen linearity induced by distinct dosing and frequencies of teriparatide administration in ovariectomized rats and monkeys

    No full text
    The lamellar structure of bone, which endows biomechanical rigidity to support the host organism, is observed in mammals, including humans. It is therefore essential to develop a quantitative analysis to evaluate the lamellarity of bone, which would especially be useful for the pharmacological evaluation of anti-osteoporotic drugs. This study applied a current system for the semi-automatic recognition of fluorescence signals to the analysis of un-decalcified bone sections from rat and monkey specimens treated with teriparatide (TPTD). Our analyses on bone formation pattern and collagen topology indicated that TPTD augmented bone lamellarity and bone collagen linearity, which were possibly associated with the recovery of collagen cross-linking, thus endowing bone rigidity

    Expansion of the osteocytic lacunar-canalicular system involved in pharmacological action of PTH revealed by AI-driven fluorescence morphometry in female rabbits

    No full text
    Osteoporosis is an age-related disorder that is characterized by reduced bone mass. Its prevention and treatment are important healthcare issues for maintaining social activity in aged societies. Although bone fractures mostly occur at sites of weakened cortical bone, pathophysiological and pharmacological evaluations of bone mass have tended to be predominantly assessed in trabecular bone. To statistically characterize cortical bone remodeling, we originally established multimode fluorescence imaging and artificial intelligence (AI)-driven morphometric analyses in six-month-old female rabbits with well-defined cortical remodeling, similar to that in humans. We evaluated three distinct administration frequencies of teriparatide [TPTD; human parathyroid hormone, hPTH (1-34)]: once (1/w), twice (2/w), and seven times (7/w) a week, with the same total dose (140 mu g/kg/week). Our analyses revealed significant expansions of the osteocytic lacunar-canalicular system and Haversian canals accompanied by the development of cortical porosity and endosteal naive bone formation induced by a frequent administration regimen (7/w) of TPTD; however, once-weekly (1/w) and twice-weekly (2/w) administration of TPTD showed little effect. These findings demonstrate a clear contrast between the effects of frequent and infrequent administration of TPTD on cortical bone metabolism and suggest that osteocytic bone remodeling is involved in the pharmacological action of PTH
    corecore