437 research outputs found

    Coherent quasi-particles-to-incoherent hole-carriers crossover in underdoped cuprates

    Full text link
    In underdoped cuprates, only a portion of the Fermi surface survives as Fermi arcs due to pseudogap opening. In hole-doped La2_{2}CuO4_4, we have deduced the "coherence temperature" TcohT_{coh} of quasi-particles on the Fermi arc above which the broadened leading edge position in angle-integrated photoemission spectra is shifted away from the Fermi level and the quasi-particle concept starts to lose its meaning. TcohT_{coh} is found to rapidly increase with hole doping, an opposite behavior to the pseudogap temperature T∗T^*. The superconducting dome is thus located below both T∗T^* and TcohT_{coh}, indicating that the superconductivity emerges out of the coherent Fermionic quasi-particles on the Fermi arc. TcohT_{coh} remains small in the underdoped region, indicating that incoherent charge carriers originating from the Fermi arc are responsible for the apparently metallic transport at high temperatures

    Momentum-dependent charge correlations in YBa2_2Cu3_3O6+δ_{6+\delta} superconductors probed by resonant x-ray scattering: Evidence for three competing phases

    Full text link
    We have used resonant x-ray scattering to determine the momentum dependent charge correlations in YBa2_2Cu3_3O6.55_{6.55} samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments were carried out on a YBa2_2Cu3_3O6.6_{6.6} crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length were found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa2_2Cu3_3O6+δ_{6+\delta}.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let

    Doping-Dependent Raman Resonance in the Model High-Temperature Superconductor HgBa2CuO4+d

    Full text link
    We study the model high-temperature superconductor HgBa2CuO4+d with electronic Raman scattering and optical ellipsometry over a wide doping range. The resonant Raman condition which enhances the scattering cross section of "two-magnon" excitations is found to change strongly with doping, and it corresponds to a rearrangement of inter-band optical transitions in the 1-3 eV range seen by ellipsometry. This unexpected change of the resonance condition allows us to reconcile the apparent discrepancy between Raman and x-ray detection of magnetic fluctuations in superconducting cuprates. Intriguingly, the strongest variation occurs across the doping level where the antinodal superconducting gap reaches its maximum.Comment: 4 pages, 4 figures, contact authors for Supplemental Materia

    Magnetic excitations in stripe-ordered La1.875_{1.875}Ba0.125_{0.125}CuO4_4 studied using resonant inelastic x-ray scattering

    Full text link
    The charge and spin correlations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 (LBCO 1/8) are studied using Cu L3L_3 edge resonant inelastic x-ray scattering (RIXS). The static charge order (CO) is observed at a wavevector of (0.24,0)(0.24,0) and its charge nature confirmed by measuring the dependence of this peak on the incident x-ray polarization. The paramagnon excitation in LBCO 1/8 is then measured as it disperses through the CO wavevector. Within the experimental uncertainty no changes are observed in the paramagnon due to the static CO, and the paramagnon seems to be similar to that measured in other cuprates, which have no static CO. Given that the stripe correlation modulates both the charge and spin degrees of freedom, it is likely that subtle changes do occur in the paramagnon due to CO. Consequently, we propose that future RIXS measurements, realized with higher energy resolution and sensitivity, should be performed to test for these effects.Comment: 5 pages, 4 figure

    Polarization resolved Cu L3L_3-edge resonant inelastic x-ray scattering of orbital and spin excitations in NdBa2_{2}Cu3_{3}O7−δ_{7-\delta}

    Full text link
    High resolution resonant inelastic x-ray scattering (RIXS) has proven particularly effective in the determination of crystal field and spin excitations in cuprates. Its strength lies in the large Cu L3L_{3} resonance and in the fact that the scattering cross section follows quite closely the single-ion model predictions, both in the insulating parent compounds and in the superconducting doped materials. However, the spectra become increasingly broader with (hole) doping, hence resolving and assigning spectral features has proven challenging even with the highest energy resolution experimentally achievable. Here we have overcome this limitation by measuring the complete polarization dependence of the RIXS spectra as function of momentum transfer and doping in thin films of NdBa2_{2}Cu3_{3}O7−δ_{7-\delta}. Besides confirming the previous assignment of dddd and spin excitations (magnon, bimagnon) in the antiferromagnetic insulating parent compound, we unequivocally single out the actual spin-flip contribution at all dopings. We also demonstrate that the softening of dddd excitations is mainly attributed to the shift of the xyxy peak to lower energy loss. These results provide a definitive assessment of the RIXS spectra of cuprates and demonstrate that RIXS measurements with full polarization control are practically feasible and highly informative.Comment: 14 pages, 10 figure

    Connection between charge-density-wave order and charge transport in the cuprate superconductors

    Get PDF
    Charge-density-wave (CDW) correlations within the quintessential CuO2_2 planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high magnetic fields implied by quantum oscillation (QO) experiments for YBa2_2Cu3_3O6+δ_{6+{\delta}} (YBCO) [3] and HgBa2_2CuO4+δ_{4+{\delta}} (Hg1201) [4]. Consequently, the observation of bulk CDW order in YBCO was a significant development [5,6,7]. Hg1201 features particularly high structural symmetry and recently has been demonstrated to exhibit Fermi-liquid charge transport in the relevant temperature-doping range of the phase diagram, whereas for YBCO and other cuprates this underlying property of the CuO2_2 planes is partially or fully masked [8-10]. It therefore is imperative to establish if the pristine transport behavior of Hg1201 is compatible with CDW order. Here we investigate Hg1201 (TcT_c = 72 K) via bulk Cu L-edge resonant X-ray scattering. We indeed observe CDW correlations in the absence of a magnetic field, although the correlations and competition with superconductivity are weaker than in YBCO. Interestingly, at the measured hole-doping level, both the short-range CDW and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which the CDW formation is preceded at the higher pseudogap temperature by qq = 0 magnetic order [11,12] and the build-up of significant dynamic antiferromagnetic correlations [13]. Furthermore, the smaller CDW modulation wave vector observed for Hg1201 is consistent with the larger electron pocket implied by both QO [4] and Hall-effect [14] measurements, which suggests that CDW correlations are indeed responsible for the low-temperature QO phenomenon

    Doping dependent charge order correlations in electron-doped cuprates

    Get PDF
    Understanding the interplay between charge order (CO) and other phenomena (e.g. pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. Here, we use resonant x-ray scattering to measure the charge order correlations in electron-doped cuprates (La2-xCexCuO4 and Nd2-xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range, and that its doping dependent wavevector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166, but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wavevector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall these findings indicate that, while verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.Comment: Supplementary information available upon reques

    Soft-phonon and charge-density-wave formation in nematic BaNi2_2As2_2

    Full text link
    We use diffuse and inelastic x-ray scattering to study the formation of an incommensurate charge-density-wave order (I-CDW) in BaNi2_2As2_2, a candidate system for charge-driven electronic nematicity. At low temperatures, the I-CDW sets in before a structural transition to a triclinic phase, within which it is suppressed and replaced by a commensurate CDW order (C-CDW). Intense diffuse scattering signal is observed around the modulation vector of the I-CDW, QI−CDWQ_{I-CDW} already visible at room temperature and collapsing into superstructure reflections in the ordered state. A clear dip in the dispersion of a low-energy transverse optical phonon mode is observed around QI−CDWQ_{I-CDW}. The phonon continuously softens upon cooling, ultimately driving the transition to the I-CDW state. The transverse character of the soft-phonon branch elucidates the complex pattern of the I-CDW satellites and settles the debated unidirectional nature of the I-CDW. The phonon instability and its reciprocal space position is well captured by our ab{ab} initio{initio} calculations. These however indicate that neither Fermi surface nesting, nor enhanced momentum-dependent electron-phonon coupling can account for the I-CDW formation, demonstrating its unconventional nature
    • …
    corecore