19 research outputs found

    Population genomics of Group B Streptococcus reveals the genetics of neonatal disease onset and meningeal invasion

    Get PDF
    Group B Streptococcus (GBS), or Streptococcus agalactiae, is a pathogen that causes preterm births, stillbirths, and acute invasive neonatal disease burden and mortality. Here, we investigate bacterial genetic signatures associated with disease onset time and meningeal tissue infection in acute invasive neonatal GBS disease. We carry out a genome-wide association study (GWAS) of 1,338 GBS isolates from newborns with acute invasive disease; the isolates had been collected annually, for 30 years, through a national bacterial surveillance program in the Netherlands. After controlling for the population structure, we identify genetic variation within noncoding and coding regions, particularly the capsule biosynthesis locus, statistically associated with neonatal GBS disease onset time and meningeal invasion. Our findings highlight the impact of integrating microbial population genomics and clinical pathogen surveillance, and demonstrate the effect of GBS genetics on disease pathogenesis in neonates and infants

    Increasing incidence of group B streptococcus neonatal infections in the Netherlands is associated with clonal expansion of CC17 and CC23

    Get PDF
    Abstract: Group B streptococcus (GBS) is the leading cause of neonatal invasive disease worldwide. In the Netherlands incidence of the disease increased despite implementation of preventive guidelines. We describe a genomic analysis of 1345 GBS isolates from neonatal (age 0–89 days) invasive infections in the Netherlands reported between 1987 and 2016. Most isolates clustered into one of five major lineages: CC17 (39%), CC19 (25%), CC23 (18%), CC10 (9%) and CC1 (7%). There was a significant rise in the number of infections due to isolates from CC17 and CC23. Phylogenetic clustering analysis revealed that this was caused by expansion of specific sub-lineages, designated CC17-A1, CC17-A2 and CC23-A1. Dating of phylogenetic trees estimated that these clones diverged in the 1960s/1970s, representing historical rather than recently emerged clones. For CC17-A1 the expansion correlated with acquisition of a new phage, carrying gene encoding a putative cell-surface protein. Representatives of CC17-A1, CC17-A2 and CC23-A1 clones were identified in datasets from other countries demonstrating their global distribution

    Incidence of invasive group B streptococcal disease and pathogen genotype distribution in newborn babies in the Netherlands over 25 years: a nationwide surveillance study

    No full text
    Group B streptococcus is the most common cause of neonatal infections. We studied the clinical and molecular epidemiology of invasive group B streptococcus infection in children younger than 3 months in the Netherlands over 25 years. We assessed the effect of the Dutch guidelines, introduced in 1999, for prevention of group B streptococcus, consisting of intravenous antibiotic prophylaxis during labour in cases of premature labour, prolonged rupture of membranes, or fever during delivery. We did this nationwide surveillance study with data from 1987 to 2011, from the Netherlands Reference Laboratory for Bacterial Meningitis. We included data for patients aged 3 months or younger with positive blood culture or cerebrospinal fluid culture for group B streptococcus and Escherichia coli infection. Early onset was defined as less than 7 days after birth and late onset was defined as 7 or more days after birth. We did multilocus sequence typing of a random subset of group B streptococcus samples to assess changes in sequence type (Mann-Kendall trend test) and the distribution of clonal complexes (χ(2) and Fisher exact test) before the introduction of prevention guidelines (1987-99) and afterwards (2000-11). We compared incidences and the distribution of clonal complexes before and after the introduction of guidelines. Most cases of group B streptococcus had early onset (696/1075; 65%). The incidence of invasive group B streptococcus infection increased from 0·20 per 1000 livebirths in 1987, to 0·32 per 1000 livebirths in 2011 (p <0·0001). The incidence of early-onset disease increased from 0·11 per 1000 livebirths to 0·19 per 1000 livebirths (p <0·0001). The incidence of invasive Escherichia coli infection was 0·05 in 1987, and 0·16 in 2011 (p=0·17). Early-onset group B streptococcus infection caused by isolates belonging to clonal complex 17 was more common in the post-implementation period than in the pre-implementation period (p=0·002). The introduction of prevention guidelines for invasive group B streptococcus disease in 1999 did not reduce the incidence of disease in neonates. The guidelines should be reassessed and alternative approaches to prevent infant invasive group B streptococcus disease should be sought. National Institute of Public Health and the Environment, the European Union's seventh framework programme, Netherlands Organization for Health Research and Development, Academic Medical Center, and the European Research Counci

    February 2009 airplane crash at Amsterdam Schiphol Airport: an overview of injuries and patient distribution

    No full text
    The objective of this study was to describe the injuries and distribution of casualties resulting from the crash of Turkish Airlines flight TK 1951 near Schiphol Airport in the Netherlands on 25 of February 2009. This was a retrospective, descriptive study. Based on a review of the hospital records for all casualties of the airplane crash, triage at the scene, time to emergency department, Abbreviated Injury Scale (AIS) and Injury Severity Score (ISS), mortality, length of hospital stay and surgical procedures were abstracted. Of the 135 passengers, nine died on-scene. A total of 126 survivors were examined in 15 hospitals; data for all survivors were available for the study. Median time between crash and arrival at an emergency department was 3.5 hours (range 1.25-5.5 hours). Six passengers were uninjured and 66 were admitted to hospital. A total of 305 injuries were recorded. The majority were head and facial injuries (92), spinal injuries (35), and fractures of extremities (38). Eighteen percent of the patients had a spinal injury. The mean ISS was 6.3 (range = 1-57). The ISS score was >15 for 13 patients. Surgical procedures (80) were necessary in 23 patients. There was no in-hospital mortality. Although the accident was in an urban area, there was a significant delay between the time of the accident and the arrival of the casualties at hospital emergency departments. The Turkish Airlines crash provides extensive information for research into mass-casualty or disaster management, triage, plane crash injuries, and survivability. The "Medical Research Turkish Airlines Crash" (MOTAC) study group currently is investigating several of these issue

    Population genomics of Group B Streptococcus reveals the genetics of neonatal disease onset and meningeal invasion

    No full text
    Group B Streptococcus (GBS), or Streptococcus agalactiae, is a pathogen that causes preterm births, stillbirths, and acute invasive neonatal disease burden and mortality. Here, we investigate bacterial genetic signatures associated with disease onset time and meningeal tissue infection in acute invasive neonatal GBS disease. We carry out a genome-wide association study (GWAS) of 1,338 GBS isolates from newborns with acute invasive disease; the isolates had been collected annually, for 30 years, through a national bacterial surveillance program in the Netherlands. After controlling for the population structure, we identify genetic variation within noncoding and coding regions, particularly the capsule biosynthesis locus, statistically associated with neonatal GBS disease onset time and meningeal invasion. Our findings highlight the impact of integrating microbial population genomics and clinical pathogen surveillance, and demonstrate the effect of GBS genetics on disease pathogenesis in neonates and infants

    Population genomics of Group B Streptococcus reveals the genetics of neonatal disease onset and meningeal invasion

    Get PDF
    Group B Streptococcus (GBS), or Streptococcus agalactiae, is a pathogen that causes preterm births, stillbirths, and acute invasive neonatal disease burden and mortality. Here, we investigate bacterial genetic signatures associated with disease onset time and meningeal tissue infection in acute invasive neonatal GBS disease. We carry out a genome-wide association study (GWAS) of 1,338 GBS isolates from newborns with acute invasive disease; the isolates had been collected annually, for 30 years, through a national bacterial surveillance program in the Netherlands. After controlling for the population structure, we identify genetic variation within noncoding and coding regions, particularly the capsule biosynthesis locus, statistically associated with neonatal GBS disease onset time and meningeal invasion. Our findings highlight the impact of integrating microbial population genomics and clinical pathogen surveillance, and demonstrate the effect of GBS genetics on disease pathogenesis in neonates and infants

    Increasing incidence of group B streptococcus neonatal infections in the Netherlands is associated with clonal expansion of CC17 and CC23

    No full text
    Group B streptococcus (GBS) is the leading cause of neonatal invasive disease worldwide. In the Netherlands incidence of the disease increased despite implementation of preventive guidelines. We describe a genomic analysis of 1345 GBS isolates from neonatal (age 0–89 days) invasive infections in the Netherlands reported between 1987 and 2016. Most isolates clustered into one of five major lineages: CC17 (39%), CC19 (25%), CC23 (18%), CC10 (9%) and CC1 (7%). There was a significant rise in the number of infections due to isolates from CC17 and CC23. Phylogenetic clustering analysis revealed that this was caused by expansion of specific sub-lineages, designated CC17-A1, CC17-A2 and CC23-A1. Dating of phylogenetic trees estimated that these clones diverged in the 1960s/1970s, representing historical rather than recently emerged clones. For CC17-A1 the expansion correlated with acquisition of a new phage, carrying gene encoding a putative cell-surface protein. Representatives of CC17-A1, CC17-A2 and CC23-A1 clones were identified in datasets from other countries demonstrating their global distribution
    corecore