2 research outputs found

    Seno-suppressive molecules as new therapeutic perspectives in rheumatic diseases

    Full text link
    Over the past years, through in vitro studies and unique animal models, biologists and clinicians have demonstrated that cellular senescence is at the root of numerous age-related chronic diseases including osteoarthritis and osteoporosis. This non-proliferative cellular syndrome can modify other surrounding tissue-resident cells through the establishment of a deleterious catabolic and inflammatory microenvironment. Targeting these deleterious cells through local or systemic seno-therapeutic agent delivery in pre-clinical models improves dramatically clinical signs and extends health span. In this review, we will summarize the current knowledge on cellular senescence, list the different strategies for identifying seno-suppressive therapeutic agents and their translations to rheumatic diseases. © 2019 Elsevier Inc

    Senescent cells: A target in osteo-articular diseases

    Full text link
    Our societies are facing with the emergence of an exponential number of patients with age-related degenerative chronic diseases such as osteoarthritis or osteoporosis. The “better” aging will thus be at the center of the next medical challenges in order to delay the loss of independence of the elderly and reduce costs of our health services. Over the last 5 years, based on innovative mouse models or in vitro studies, several research teams have demonstrated that many age-related degenerative diseases have in common a deleterious accumulation of so-called senescent cells in their respective deficient tissues. Thus, under the concept of senolysis, it has been proposed to target pharmacologically in vivo these cells to eliminate them and thus delay the emergence of these chronic diseases of the elderly subject. We propose here to summarize the recent strategies applied for the identification of novel senolytics and their uses in osteoarthritis and osteoporosis therapies. © 2018 EDP Sciences. All rights reserved
    corecore