18 research outputs found

    High Dose-rate Intracavitary Brachytherapy for Cervical Carcinomas with Lower Vaginal Infiltration

    No full text
    PurposeThis report presents the clinical applications of an automated treatment-planning program of high-dose-rate intracavitary brachytherapy (HDR-ICBT) for advanced uterine cervical cancer infiltrating the parametrium and the lower vagina.\nMethods and MaterialsWe adopted HDR-ICBT under optimized dose distribution for 22 cervical cancer patients with tumor infiltration of the lower half of the vagina. All patients had squamous cell carcinoma with International Federation of Gynecology and Obstetrics clinical stages IIB–IVA. After whole pelvic external beam irradiation with a median dose of 30.6 Gy, a conventional ICBT was applied as pear-shaped isodose curve. Then 3–4 more sessions per week of this new method of ICBT were performed. With a simple determination of the treatment volume, the cervix-parametrium, and the lower vagina were covered automatically and simultaneously by this program, that was designated as utero-vaginal brachytherapy. The mean follow-up period was 87.4 months (range, 51.8–147.9 months).\nResultsIsodose curve for this program was galaxy-shaped. Five-year local-progression-free survival and overall survival rates were 90.7% and 81.8%, respectively. Among those patients with late complications higher than Grade 2 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity score, only one (4.5%) developed severe proctitis.\nConclusionsBecause of the favorable treatment outcomes, this treatment-planning program with a simplified target-volume based dosimetry was proposed for cervical cancer with lower vaginal infiltration

    Dose distribution near thin titanium plate for skull fixation irradiated by a 4-MV photon beam

    No full text
    To investigate the effects of scattered radiation when a thin titanium plate (thickness, 0.05 cm) used for skull fixation in cerebral nerve surgery is irradiated by a 4-MV photon beam. We investigated the dose distribution of radiation inside a phantom that simulates a human head fitted with a thin titanium plate used for post-surgery skull fixation and compared the distribution data measured using detectors, obtained by Monte Carlo (MC) simulations, and calculated using a radiation treatment planning system (TPS). Simulations were shown to accurately represent measured values. The effects of scattered radiation produced by high-Z materials such as titanium are not sufficiently considered currently in TPS dose calculations. Our comparisons show that the dose distribution is affected by scattered radiation around a thin high-Z material. The depth dose is measured and calculated along the central beam axis inside a water phantom with thin titanium plates at various depths. The maximum relative differences between simulation and TPS results on the entrance and exit sides of the plate were 23.1% and – 12.7%, respectively. However, the depth doses do not change in regions deeper than the plate in water. Although titanium is a high-Z material, if the titanium plate used for skull fixation in cerebral nerve surgery is thin, there is a slight change in the dose distribution in regions away from the plate. In addition, we investigated the effects of variation of photon energies, sizes of radiation field and thickness of the plate. When the target to be irradiated is far from the thin titanium plate, the dose differs little from what it would be in the absence of a plate, though the dose escalation existed in front of the metal plate
    corecore