83 research outputs found

    Multi-line split DNA synthesis: a novel combinatorial method to make high quality peptide libraries

    Get PDF
    BACKGROUND: We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. RESULTS: A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS) is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 10(16 )diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. CONCLUSIONS: Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases

    Deficiency in Galectin-3 Promotes Hepatic Injury in CDAA Diet-Induced Nonalcoholic Fatty Liver Disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a condition in which excess fat accumulates in hepatocytes. Nonalcoholic steatohepatitis (NASH), a severe form of NAFLD in which inflammation and fibrosis in the liver are noted, may eventually progress to end-stage liver disease. Galectin-3, a β-galactoside-binding animal lectin, is a multifunctional protein. This protein is involved in inflammatory responses and carcinogenesis. We investigated whether galectin-3 is involved in the development of NASH by comparing galectin-3 knockout (gal3−/−) mice and wild-type (gal3+/+) mice with choline-deficient L-amino-acid-defined (CDAA) diet-induced NAFLD/NASH. Hepatic injury was significantly more severe in the gal3−/− male mice, as compared to the gal3+/+ mice. Data generated by microarray analysis of gene expression suggested that galectin-3 deficiency causes alterations in the expression of various genes associated with carcinogenesis and lipid metabolism. Through canonical pathway analysis, involvement of PDGF and IL-6 signaling pathways was suggested in galectin-3 deficiency. Significant increase of CD14, Fos, and Jun, those that were related to lipopolysaccharide-mediated signaling, was candidate to promote hepatocellular damages in galectin-3 deficiency. In conclusion, galectin-3 deficiency in CDAA diet promotes NAFLD features. It may be caused by alterations in the expression profiles of various hepatic genes including lipopolysaccharide-mediated inflammation

    Novel transcript profiling of diffuse alveolar damage induced by hyperoxia exposure in mice: Normalization by glyceraldehyde 3-phosphate dehydrogenase

    Get PDF
    Under mechanical ventilation with high-inspired oxygen concentration, diffuse alveolar damage (DAD) was found to take place in some patients. To clarify the molecular pathophysiology of this condition we investigated the time course of gene expression changes induced by hyperoxia exposure in mouse lung using real-time quantitative polymerase chain reaction (real-time qPCR). Our results normalized by glyceraldehyde 3-phosphate dehydrogenase showed that mRNA levels of cysteine rich protein 61 (CYR61) and connective tissue growth factor (CTGF) were significantly up-regulated, while those of surfactant-associated protein C (SFTPC), cytochrome P450, 2F2 (CYP2F2), Claudin 1, (CLDN1), membrane-associated zonula occludens protein-1 (ZO-1), lysozyme (LYZS), and P lysozyme structural (LZP-S) were significantly down-regulated. Increasing level of mRNAs, each encoding CYR61 and CTGF, suggests a serious risk of fibrosing alveolitis. Decrease in levels of mRNAs for SFTPC, CYP2F2, CLDN1, ZO-1, LYZS, and LZP-S suggests alveolar dysfunction and disruption of the immune system. Moreover we confirmed apoptotic conditions, such as significant up-regulations of mRNA levels in Myc and Galectin-3. Hyperoxic condition probably yielded reactive oxygen species (ROS), which resulted in a malignant cycle of ROS production by Myc overexpression

    An Efficient Ligation Method in the Making of an in vitro Virus for in vitro Protein Evolution

    Get PDF
    The “in vitro virus” is a molecular construct to perform evolutionary protein engineering. The “virion (=viral particle)” (mRNA-peptide fusion), is made by bonding a nascent protein with its coding mRNA via puromycin in a test tube for in vitro translation. In this work, the puromycin-linker was attached to mRNA using the Y-ligation, which was a method of two single-strands ligation at the end of a double-stranded stem to make a stem-loop structure. This reaction gave a yield of about 95%. We compared the Y-ligation with two other ligation reactions and showed that the Y-ligation gave the best productivity. An efficient amplification of the in vitro virus with this “viral genome” was demonstrated

    Effects of low-intensity pulsed ultrasound on osteoclasts: Analysis with goldfish scales as a model of bone

    Get PDF
    The effects of low-intensity pulsed ultrasound (LIPUS) on osteoclastogenesis were examined using fish scales that had both osteoclasts and osteoblasts. The binding of the receptor activator of NF-κB ligand (RANKL) in osteoblasts to the receptor activator of NF-κB (RANK) in osteoclasts induced osteoclastogenesis. Therefore, we focused on RANK/RANKL signaling. After 6 h of incubation following LIPUS treatment, mRNA expression of RANKL increased significantly. Resulting from the increased RANKL mRNA level, the expression of transcription-regulating factors significantly increased after 6 h of incubation, and then the mRNA expression of functional genes was significantly up-regulated after 12 h of incubation. However, the mRNA expression of osteoprotegerin (OPG), which is known as an osteoclastogenesis inhibitory factor, also significantly increased after 6 h of incubation and tended to further increase after 12 h of incubation. At 24 h of incubation, osteoclastic functional genes’ mRNA expression decreased to the level of the control. Furthermore, we performed an in vivo experiment with goldfish. Two weeks after daily LIPUS exposure, osteoclastic marker enzymes tended to decrease while osteoblastic marker enzymes were activated. The regeneration rate of the LIPUS-treated scales was significantly higher than that of the control scales. Thus, LIPUS moderately activates osteoclasts and induces bone formation. © 2017 Biomedical Research Foundation. All rights reserved

    Low-intensity pulsed ultrasound induces apoptosis in osteoclasts: Fish scales are a suitable model for the analysis of bone metabolism by ultrasound

    Get PDF
    Using fish scales in which osteoclasts and osteoblasts coexist on the calcified bone matrix, we examined the effects of low-intensity pulsed ultrasound (LIPUS) on both osteoclasts and osteoblasts. At 3 h of incubation after LIPUS treatment, osteoclastic markers such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K mRNA expressions decreased significantly while mRNA expressions of osteoblastic markers, osteocalcin, distal-less homeobox 5, runt-related transcription factor 2a, and runt-related transcription factor 2b, increased significantly. At 6 and 18 h of incubation, however, both osteoclastic and osteoblastic marker mRNA expression did not change at least present conditions. Using GeneChip analysis of zebrafish scales treated with LIPUS, we found that cell death-related genes were upregulated with LIPUS treatment. Real-time PCR analysis indicated that the expression of apoptosis-related genes also increased significantly. To confirm the involvement of apoptosis in osteoclasts with LIPUS, osteoclasts were induced by autotransplanting scales in goldfish. Thereafter, the DNA fragmentation associated with apoptosis was detected in osteoclasts using the TUNEL (TdT-mediated dUTP nick end labeling) method. The multi-nuclei of TRAP-stained osteoclasts in the scales were labeled with TUNEL. TUNEL staining showed that the number of apoptotic osteoclasts in goldfish scales was significantly elevated by treatment with LIPUS at 3 h of incubation. Thus, we are the first to demonstrate that LIPUS directly functions to osteoclasts and to conclude that LIPUS directly causes apoptosis in osteoclasts shortly after exposure. © 2016 Elsevier Inc.Embargo Period 12 month

    Effects of inorganic mercury and methylmercury on osteoclasts and osteoblasts in the scales of the marine teleost as a model system of bone

    Get PDF
    To evaluate the effects of inorganic mercury (InHg) and methylmercury (MeHg) on bone metabolism in a marine teleost, the activity of tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) as indicators of such activity in osteoclasts and osteoblasts, respectively, were examined in scales of nibbler fish (Girella punctata). We found several lines of scales with nearly the same TRAP and ALP activity levels. Using these scales, we evaluated the influence of InHg and MeHg. TRAP activity in the scales treated with InHg (10-5 and 10-4 M) and MeHg (10-6 to 10-4 M) during 6 hrs of incubation decreased significantly. In contrast, ALP activity decreased after exposure to InHg (10-5 and 10-4 M) and MeHg (10-6 to 10-4 M) for 18 and 36 hrs, although its activity did not change after 6 hrs of incubation. As in enzyme activity 6 hrs after incubation, mRNA expression of TRAP (osteoclastic marker) decreased significantly with InHg and MeHg treatment, while that of collagen (osteoblastic marker) did not change significantly. At 6 hrs after incubation, the mRNA expression of metallothionein, which is a metal-binding protein in osteoblasts, was significantly increased following treatment with InHg or MeHg, suggesting that it may be involved in the protection of osteoblasts against mercury exposure up to 6 hrs after incubation. To our knowledge, this is the first report of the effects of mercury on osteoclasts and osteoblasts using marine teleost scale as a model system of bone. © 2014 Zoological Society of Japan
    corecore