203 research outputs found

    Collapses and revivals of stored orbital angular momentum of light in a cold atomic ensemble

    Full text link
    We report on the storage of orbital angular momentum of light in a cold ensemble of cesium atoms. We employ Bragg diffraction to retrieve the stored optical information impressed into the atomic coherence by the incident light fields. The stored information can be manipulated by an applied magnetic field and we were able to observe collapses and revivals due to the rotation of the stored atomic Zeeman coherence for times longer than 15 ÎĽs\mu s.Comment: Submitted to Physical Review

    Dynamics of a stored Zeeman coherence grating in an external magnetic field

    Full text link
    We investigate the evolution of a Zeeman coherence grating induced in a cold atomic cesium sample in the presence of an external magnetic field. The gratings are created in a three-beam light storage configuration using two quasi-collinear writing laser pulses and reading with a counterpropagating pulse after a variable time delay. The phase conjugated pulse arising from the atomic sample is monitored. Collapses and revivals of the retrieved pulse are observed for different polarizations of the laser beams and for different directions of the applied magnetic field. While magnetic field inhomogeneities are responsible for the decay of the coherent atomic response, a five-fold increase in the coherence decay time, with respect to no applied magnetic field, is obtained for an appropriate choice of the direction of the applied magnetic field. A simplified theoretical model illustrates the role of the magnetic field mean and its inhomogeneity on the collective atomic response.Comment: To appear in J. Phys.

    Narrow band amplification of light carrying orbital angular momentum

    Full text link
    We report on the amplification of an optical vortex beam carrying orbital angular momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. A 20\% single-pass Raman gain of a weak vortex signal field is observed with a spectral width of order of 1 MHz, much smaller than the natural width, demonstrating that the amplification process preserves the phase structure of the vortex beam. The gain is observed in the degenerated two-level system associated with the hyperfine transition 6S1/2(F=3)↔6P3/2(F′=2)6S_{1/2}(F=3)\leftrightarrow 6P_{3/2}(F^{\prime}=2) of cesium. Our experimental observations are explained with a simple theoretical model based on a three-level Λ\Lambda system interacting coherently with the weak Laguerre-Gauss field and a strong coupling field, including an incoherent pumping rate between the two degenerate ground-states.Comment: 9 pages, 4 figure

    Polarization dependence of four-wave mixing in a degenerate two-level system

    Get PDF
    Nearly degenerate four-wave mixing (NDFWM) within a closed degenerate two-level atomic transition is theoretically and experimentally examined. Using the model presented by A. Lezama et al [Phys. Rev. A 61, 013801 (2000)] the NDFWM spectra corresponding to different pump and probe polarization cases are calculated and discussed. The calculated spectra are compared to the observation of NDFWM within the 6S1/2(F=4)→6P3/2(F=5)6S_{1/2}(F=4)\to 6P_{3/2}(F=5) transition of cesium in a phase conjugation experiment using magneto optically cooled atomsComment: 10 pages, 13 figures; submitted to Phys. Rev.

    Off-axis retrieval of orbital angular momentum of light stored in cold atoms

    Full text link
    We report on the storage of orbital angu- lar momentum (OAM) of light of a Laguerre-Gaussian mode in an ensemble of cold cesium atoms and its re- trieval along an axis different from the incident light beam. We employed a time-delayed four-wave mixing configuration to demonstrate that at small angle (2o), after storage, the retrieved beam carries the same OAM as the one encoded in the input beam. A calculation based on mode decomposition of the retrieved beam over the Laguerre-Gaussian basis is in agreement with the experimental observations done at small angle values. However, the calculation shows that the OAM retrieving would get lost at larger angles, reducing the fidelity of such storing-retrieving process. In addition, we have also observed that by applying an external magnetic field to the atomic ensemble the retrieved OAM presents Larmor oscillations, demonstrating the possibility of its manipulation and off-axis retrieval.Comment: 9 pages, 4 figure

    Dynamics of saturated Bragg diffraction in a stored light grating in cold atoms

    Full text link
    We report on a detailed investigation of the dynamics and the saturation of a light grating stored in a sample of cold cesium atoms. We employ Bragg diffraction to retrieve the stored optical information impressed into the atomic coherence by the incident light fields. The diffracted efficiency is studied as a function of the intensities of both writing and reading laser beams. A theoretical model is developed to predict the temporal pulse shape of the retrieved signal and compares reasonably well with the observed results.Comment: Submitted to Phys. Rev.

    Spectroscopic observation of the rotational Doppler effect

    Get PDF
    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle/EIT coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.Comment: Submited to Physical Review Lette
    • …
    corecore