588 research outputs found

    The importance of accurate time-integration in the numerical modelling of P-wave propagation

    Get PDF
    The numerical dissipation characteristics of the Newmark and generalised-α time-integration schemes are investigated for P-wave propagation in a fully saturated level-ground sand deposit, where higher frequencies than those for S-waves are of concern. The study focuses on resonance, which has been shown to be of utmost importance for triggering liquefaction due to P-waves alone. The generalised-α scheme performs well, provided that the time-step has been carefully selected. Conversely, the dissipative Newmark method can excessively damp the response, changing radically the computed results. This implies that a computationally prohibiting small time-step would be required for Newmark to provide an accurate solution

    Numerical Modelling of Multi-directional Earthquake Loading and Its Effect on Sand Liquefaction

    Get PDF
    Earthquakes generate multi-directional ground motions, two components in the horizontal direction and one in the vertical. Nevertheless, the effect of vertical motion on site response analysis has not been the object of extensive research. The 2010/2011 Canterbury sequence of seismic events in New Zealand is a prime example among other earlier field observations strongly corroborating that the vertical acceleration may have a detrimental effect on soil liquefaction. Consequently, this study aims to provide insight into the influence of the input vertical motion on sand liquefaction. For this reason, two ground motions, with very different frequency contents, are used as the input excitations. Non-linear elasto-plastic plane strain fully coupled effective stress-based finite element analyses are conducted to investigate the occurrence of liquefaction in a hypothetical fully saturated Fraser River Sand deposit. The results indicate that the frequency content of the input motion is of utmost importance for the response of sands to liquefaction when the vertical loading is considered

    An assessment of a simplified methodology for determining the thermal performance of thermo-active piles

    Get PDF
    Ground source energy systems provide low-carbon heating and cooling to buildings, but their efficient deployment requires a reliable estimate of their thermal performance. A simplified methodology is presented to determine the thermal performance of thermo-active piles when heating or cooling loads are specified with either inlet pipe temperatures or imposed heat fluxes. The proposed methodology avoids computationally expensive 3D analyses and the explicit simulation of heat exchanger pipes, relying instead on 2D thermal analyses. When the heating or cooling of a thermo-active pile is assessed by imposing inlet pipe temperatures, the proposed methodology allows the determination of the power of pile per unit length. Conversely, when heating or cooling loads are specified via extracted or injected heat fluxes, the inlet and outlet fluid temperatures, as well as average temperatures at pile wall, are determined. The proposed methodology has been shown to reproduce accurately the thermal performance of thermo-active piles modelled using 3D analyses where heat exchanger pipes are explicitly simulated, considering different patterns of heating and cooling cycles. The application of the proposed methodology to the case of a real thermo-active pile is demonstrated by comparing its predicted thermal performance with the results of a well-documented field thermal response test

    A practical method for calculating thermally-induced stresses in pile foundations used as heat exchangers

    Get PDF
    Thermo-active piles are capable of providing both structural stability as foundations and low carbon heating and cooling as ground source heat exchangers. When subjected to heating or cooling, the soil surrounding the pile restricts its expansion or contraction, giving rise to thermally-induced axial stresses, which need to be considered during design. Previous numerical studies often assume axisymmetry of the problem and/or a simplification of the heating or cooling mechanism of the pile. To simulate accurately the development of thermallyinduced axial stresses, this paper presents a computational study comprising three dimensional fully coupled thermo-hydro-mechanical finite element analyses conducted using the Imperial College Finite Element Program (ICFEP), where the heating of a thermo-active pile is simulated by prescribing a flow of hot water through the heat exchanger pipes within the pile. The effects of pipe arrangement on thermally-induced axial stresses are investigated by considering three different cases – single U loop, double U-loop and triple U-loop. Since threedimensional analyses are computationally expensive, a simplified method using a combination of two-dimensional analyses is proposed to estimate the thermally-induced axial stresses, which is subsequently validated and shown to yield accurate results

    Numerical investigation of multi-directional site response based on KiK-net downhole array monitoring data

    Get PDF
    The multi-directional site response of a well-documented downhole array in Japan is numerically investigated with three directional (3-D) dynamic hydro-mechanically (HM) coupled Finite Element (FE) analysis. The paper discusses the challenges that 3-D modelling poses in the calibration of a cyclic nonlinear model, giving particular emphasis on the independent simulation of the shear and volumetric deformation mechanisms. The employed FE model is validated by comparing the predicted site response against the recorded motions obtained from the KiK-net downhole array monitoring system in Japan. The results show that, by employing the appropriate numerical model, a good agreement can be achieved between the numerical results and the monitored acceleration response in all three directions simultaneously. Furthermore, the comparison with the recorded response highlights the significance of the independent modelling of the shear and volumetric deformation mechanisms to the improvement of the numerical predictions of multi-directional site response

    Development of a practical heat of hydration model for concrete curing for geotechnical applications

    Get PDF
    Thermal integrity profiling (TIP) is a common non-destructive technique to evaluate the quality of construction of piles by analysing the temperature fields due to heat of hydration from freshly cast concrete piles. For this process to be accurate, a reliable concrete heat of hydration model is required. This paper proposes a practical and simple to calibrate four parameter model for the prediction of concrete heat of hydration. This model has been shown to be able to reproduce the evolution of heat of hydration measured in laboratory tests, as well as field measurements of temperature within curing concrete piles, as part of a thermal integrity profiling (TIP) operation performed at a site in London. With the simplicity of the model and the small number of model parameters involved, this model can be easily and quickly calibrated, enabling quick predictions of expected temperatures for subsequent casts using the same concrete mix

    Predictive modelling of thermo-active tunnels in London Clay

    Get PDF
    Thermo-active structures are underground facilities which enable the exchange of thermal energy between the ground and the overlying buildings, thus providing renewable means of space heating and cooling. Although this technology is becoming increasingly popular, the behaviour of geotechnical structures under additional thermal loading is still not fully understood. This paper focuses on the use of underground tunnels as thermo-active structures and explains their behaviour through a series of finite element analyses based on an existing case study of isothermal tunnels in London Clay. The bespoke finite element codeI CFEP is adopted which is capable of simulating the fully coupled thermo-hydro-mechanical behaviour of porous materials. The complex coupled interactions between the tunnel and the surrounding soil are explored bycomparing results from selected types of coupledand uncoupled simulations. It is demonstratedthat: (1) the thermally-induceddeformation of the tunnel and the ground are more critical design aspects than the thermally-induced forces in the tunnel lining, and (2) the modelling approach in terms of the type of analysis, as well as the assumed permeability of the tunnel lining, have a significant effect on the computed tunnel response and,hence, must be chosen carefull

    Finite element modelling of heat transfer in ground source energy systems with heat exchanger pipes

    Get PDF
    Ground source energy systems (GSES) utilise low enthalpy geothermal energy and have been recognised as an efficient means of providing low carbon space heating and cooling. This study focuses on GSES where the exchange of heat between the ground and the building is achieved by circulating a fluid through heat exchanger pipes. Although numerical analysis is a powerful tool for exploring the performance of such systems, simulating the highly advective flows inside the heat exchanger pipes can be problematic. This paper presents an efficient approach for modelling these systems using the finite element method (FEM). The pipes are discretised with line elements and the conductive-advective heat flux along them is solved using the Petrov-Galerkin FEM instead of the conventional Galerkin FEM. Following extensive numerical studies, a modelling approach for simulating heat exchanger pipes, which employs line elements and a special material with enhanced thermal properties, is developed. The modelling approach is then adopted in three-dimensional simulations of two thermal response tests, with an excellent match between the computed and measured temperatures being obtained
    • …
    corecore