68 research outputs found

    Soy foods have low glycemic and insulin response indices in normal weight subjects

    Get PDF
    BACKGROUND: Foods with a low glycemic index (GI) may provide a variety of health benefits. The objective of the present study was to measure the GI and insulin index (II) of select soy foods. METHODS: The study was conducted in two parts with low-carbohydrate products being tested separately. In Experiment 1, subjects averaged 23.2 years of age with BMI = 22.0 kg/m(2), while subjects in Experiment 2 averaged 23.9 years of age with BMI = 21.6 kg/m(2). The reference (glucose) and test foods were served in portions containing 10 g of carbohydrates in Experiment 1 (two test foods) and 25 g of carbohydrates in Experiment 2 (four test foods). Subjects consumed the reference food twice and each test food once. For each test, subjects were instructed to consume a fixed portion of the reference food or test food together with 250 g of water within 12 min. Blood samples were collected before each test and at 15, 30, 45, 60, 90, and 120 min after consumption of reference or test foods to quantify glucose and insulin. Two-hour blood glucose and plasma insulin curves were constructed and areas under the curves were calculated. GI and II values for each subject and test food were calculated. RESULTS: In Experiment 1, both low-carbohydrate soy foods were shown to have significantly (P < 0.05) lower GI and II values than the reference food. In Experiment 2, three of the four test foods had significantly (P < 0.05) lower GI and II values than the reference food. CONCLUSION: All but one of the soy foods tested had a low GI, suggesting that soy foods may be an appropriate part of diets intended to improve control of blood glucose and insulin levels

    A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid detection of Bacillus spores and identification of Bacillus species

    Get PDF
    Background The rapid identification of Bacillus spores and bacterial identification are paramount because of their implications in food poisoning, pathogenesis and their use as potential biowarfare agents. Many automated analytical techniques such as Curie-point pyrolysis mass spectrometry (Py-MS) have been used to identify bacterial spores giving use to large amounts of analytical data. This high number of features makes interpretation of the data extremely difficult We analysed Py-MS data from 36 different strains of aerobic endospore-forming bacteria encompassing seven different species. These bacteria were grown axenically on nutrient agar and vegetative biomass and spores were analyzed by Curie-point Py-MS. Results We develop a novel genetic algorithm-Bayesian network algorithm that accurately identifies sand selects a small subset of key relevant mass spectra (biomarkers) to be further analysed. Once identified, this subset of relevant biomarkers was then used to identify Bacillus spores successfully and to identify Bacillus species via a Bayesian network model specifically built for this reduced set of features. Conclusions This final compact Bayesian network classification model is parsimonious, computationally fast to run and its graphical visualization allows easy interpretation of the probabilistic relationships among selected biomarkers. In addition, we compare the features selected by the genetic algorithm-Bayesian network approach with the features selected by partial least squares-discriminant analysis (PLS-DA). The classification accuracy results show that the set of features selected by the GA-BN is far superior to PLS-DA

    Early detection of breast, cervical, ovarian and endometrial cancers in low resource countries: an integrated approach

    Get PDF
    The incidence of breast and gynecological cancers continues to increase in low and middle resource countries [LRC'S and MRC's] with a disproportionately higher mortality rate compared to that in high resource countries. This has been attributed to factors such as an increased life span due to better control of communicable diseases and improved nutrition, as well as lifestyle and reproductive changes. A lack of public awareness and understanding of these cancers, absence of an organized screening program and a lack of accessible and effective treatment options, is responsible for the higher mortality rate. A practical approach of a combined program of integrating a well woman examination with screening for breast and cervical cancer and diagnostic evaluation for Ovarian and Endometrial cancer in symptomatic women is proposed in this article which can serve as a model to be studied for efficacy in low resource countries

    ALDH1A2 (RALDH2) genetic variation in human congenital heart disease

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Signaling by the vitamin A-derived morphogen retinoic acid (RA) is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2) is critical for cardiac development, we screened patients with congenital heart disease (CHDs) for genetic variation at the ALDH1A2 locus.\ud \ud \ud \ud Methods\ud \ud One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430) at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM) simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay.\ud \ud \ud \ud Results\ud \ud We describe in Tetralogy of Fallot (TOF) the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT) design using single marker genotype, or haplotype information do not show differences between cases and controls.\ud \ud \ud \ud Conclusion\ud \ud In summary, our screen indicates that ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans.Work supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 01/000090; 00/030722; 01/142381; 02/113402; 03/099982; 04/116068; 04/157044 and Conselho Nacional de Desenvolvimento Científico e Tecnológico 481872/20078. We would like to thank the careful work and thoughtful suggestions of the two reviewers responsible for the reviewing editorial process.Work supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 01/00009-0; 00/03072-2; 01/14238-1; 02/11340-2; 03/09998-2; 04/11606-8; 04/15704-4 and Conselho Nacional de Desenvolvimento Científico e Tecnológico 481872/2007-8. We would like to thank the careful work and thoughtful suggestions of the two reviewers responsible for the reviewing editorial process

    Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila melanogaster

    Get PDF
    Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. Methods and Findings: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genomewide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79 % and 56–66 % of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. Conclusions: We identified novel candidate genes associated with variation in resistance to oxidative stress that hav

    Role of DNA methylation in head and neck cancer

    Get PDF
    Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC

    Transfusion-transmitted infections

    Get PDF
    Although the risk of transfusion-transmitted infections today is lower than ever, the supply of safe blood products remains subject to contamination with known and yet to be identified human pathogens. Only continuous improvement and implementation of donor selection, sensitive screening tests and effective inactivation procedures can ensure the elimination, or at least reduction, of the risk of acquiring transfusion transmitted infections. In addition, ongoing education and up-to-date information regarding infectious agents that are potentially transmitted via blood components is necessary to promote the reporting of adverse events, an important component of transfusion transmitted disease surveillance. Thus, the collaboration of all parties involved in transfusion medicine, including national haemovigilance systems, is crucial for protecting a secure blood product supply from known and emerging blood-borne pathogens

    Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications

    Get PDF
    Owing to their chemical reactivity, radicals have cytocidal properties. Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalysed reactions. Although these developments are currently still in their infancy, they nevertheless deserve consideration. There are now numerous examples known of conventional anti-cancer drugs that may at least in part exert cytotoxicity by induction of radical formation. Some drugs, such as arsenic trioxide and 2-methoxy-estradiol, were shown to induce programmed cell death due to radical formation. Enzyme-catalysed radical formation has the advantage that cytotoxic products are produced continuously over an extended period of time in the vicinity of tumour cells. Up to now the enzymatic formation of toxic metabolites has nearly exclusively been investigated using bovine serum amine oxidase (BSAO), and spermine as substrate. The metabolites of this reaction, hydrogen peroxide and aldehydes are cytotoxic. The combination of BSAO and spermine is not only able to prevent tumour cell growth, but prevents also tumour growth, particularly well if the enzyme has been conjugated with a biocompatible gel. Since the tumour cells release substrates of BSAO, the administration of spermine is not required. Combination with cytotoxic drugs, and elevation of temperature improves the cytocidal effect of spermine metabolites. The fact that multidrug resistant cells are more sensitive to spermine metabolites than their wild type counterparts makes this new approach especially attractive, since the development of multidrug resistance is one of the major problems of conventional cancer therapy
    corecore