6 research outputs found

    Modelling the Contribution of Land Use to Nitrate Yield from a Rural Catchment

    Get PDF
    The nutrient flow dynamics in rural landscapes are among the basic characteristics of landscape functioning. In this study, the ecohydrological model SWAT (Soil and Water Assessment Tool) was applied in a small rural catchment in northwest (NW) Spain to evaluate the contribution of land use on nitrate losses and to assess the relative importance of different pathways by which nitrate is delivered to the drainage network. The model was first calibrated and validated at a monthly time step. The SWAT model performance was satisfactory (R2 > 0.5; Nash-Sutcliffe efficiency (NSE) > 0.5 and percent bias (PBIAS) < 10%) during both the calibration and validation periods, indicating that SWAT predicted the nitrate discharge accurately. Using the calibrated SWAT model, this study showed that agricultural lands, even though they represent only 30% of the catchment, were main contributor to the nitrate losses accounting for about 77% of the total nitrate yield. The model results also indicated that, irrespective of the land use, groundwater flow is the main pathway for nitrate losses (63%); therefore, appropriate management practices aimed at decreasing nitrate leaching will be key factors in reducing nitrate yield in the study catchment

    Differentiating between fatal and non-fatal mining accidents using artificial intelligence techniques

    Get PDF
    Using statistical methods for categorical data analysis, namely multiple correspondence analysis and Artificial Intelligence through Bayesian networks, we analysed a database of occupational mining accidents for Spain for the period 2004–2017 to identify the factors most associated with the occurrence of fatal and non-fatal accidents. The results obtained allow to shed light on the hidden patterns present in different work situations where accidents can have fatal consequences. In addition, this study exemplifies the application of statistical techniques suitable for Big Data and data-driven decision making in the mining sector.Xunta de Galicia | Ref. ED431C 2018/4

    Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin

    No full text
    Summarization: Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs) and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that characterization by WT improves understanding of the general conditions under which runoff and SY occur, and provides useful information for understanding the spatial variability of runoff, and SY throughout the Mediterranean basin. The approach used here could be useful to aid of the design of regional water management and soil conservation measures.Παρουσιάστηκε στο: Journal of Hydrolog

    GEODIVULGAR: Geología y Sociedad

    Get PDF
    Se incluyen los dos volúmenes resultantes de los concursos de relatos e Ilustración que han tenido lugar en el desarrollo del ProyectoDepto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasFALSEsubmitte

    Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin

    No full text
    Summarization: Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Presented on: Atmospher
    corecore