5 research outputs found

    Route to nonlocality and observation of accessible solitons

    Full text link
    We develop a general theory of spatial solitons in a liquid crystalline medium exhibiting a nonlinearity with an arbitrary degree of effective nonlocality. The model accounts the observability of "accessible solitons" and establishes an important link with parametric solitons.Comment: 4 pages, 2 figure

    Advances in transparent planar optics. Enabling large aperture, ultrathin lenses

    No full text
    Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer-thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low-cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non-mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization
    corecore