6 research outputs found

    Immunoglobulin gene repertoire diversification and selection in the stomach – from gastritis to gastric lymphomas

    No full text
    Chronic gastritis is characterized by gastric mucosal inflammation due to autoimmune responses or infection, frequently with Helicobacter pylori. Gastritis with H. pylori background can cause gastric mucosa-associated lymphoid tissue lymphoma (MALT-L), which sometimes further transforms into diffuse large B-cell lymphoma (DLBCL). However, gastric DLBCL can also be initiated de novo. The mechanisms underlying transformation into DLBCL are not completely understood.We analyzed immunoglobulin repertoires and clonal trees to investigate whether and how immunoglobulin gene repertoires, clonal diversification, and selection in gastritis, gastric MALT-L, and DLBCL differ from each other and from normal responses. The two gastritis types (positive or negative for H. pylori) had similarly diverse repertoires. MALT-L dominant clones (defined as the largest clones in each sample) presented higher diversification and longer mutational histories compared with all other conditions. DLBCL dominant clones displayed lower clonal diversification, suggesting the transforming events are triggered by similar responses in different patients. These results are surprising, as we expected to find similarities between the dominant clones of gastritis and MALT-L and between those of MALT-L and DLBCL

    Nopa Report, Dutch Office Standards

    No full text
    Follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL) and primary central nervous system lymphoma are B cell malignancies. FL and DLBCL have a germinal center origin. We have applied mutational analyses and a novel algorithm for quantifying shape properties of mutational lineage trees to investigate the nature of the diversification, somatic hypermutation and selection processes that affect B cell clones in these malignancies and reveal whether they differ from normal responses. Lineage tree analysis demonstrated higher diversification and mutations per cell in the lymphoma clones. This was caused solely by the longer diversification times of the malignant clones, as their recent diversification processes were similar to those of normal responses, implying similar mutation frequencies. Since previous analyses of antigen-driven selection were shown to yield false positives, we performed a corrected analysis of replacement and silent mutation patterns, which revealed selection against replacement mutations in the framework regions, responsible for the structural integrity of the B cell receptor, but not for positive selection for replacements in the complementary determining regions. Most replacements, however, were neutral or conservative, suggesting that if at all selection operates in these malignancies it is for structural B cell receptor integrity but not for antigen binding

    On being the right size: antibody repertoire formation in the mouse and human

    No full text
    corecore