216 research outputs found

    Extrasolar Planets and Their Host Stars

    Full text link
    In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently the only visible component in the systems. This book describes our work in the field of characterization of exoplanet host stars using interferometry to determine angular diameters, trigonometric parallax to determine physical radii, and SED fitting to determine effective temperatures and luminosities. The interferometry data are based on our decade-long survey using the CHARA Array. We describe our methods and give an update on the status of the field, including a table with the astrophysical properties of all stars with high-precision interferometric diameters out to 150 pc (status Nov 2016). In addition, we elaborate in more detail on a number of particularly significant or important exoplanet systems, particularly with respect to (1) insights gained from transiting exoplanets, (2) the determination of system habitable zones, and (3) the discrepancy between directly determined and model-based stellar radii. Finally, we discuss current and future work including the calibration of semi-empirical methods based on interferometric data.Comment: 80 pages in SpringerBrief format containing a few blank pages, 16 figures, 1 table of all stars with high-precision interferometric diameters, glossary of commonly encountered terms, SpringerBrief 2017, ISBN 978-3-319-61198-

    Sizing Up the Stars

    Get PDF
    For the main part of this dissertation, I have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars to better than 4% accuracy. The results of these observations also yield empirical determinations of stellar linear radii and effective temperatures for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale isochrones to constrain the masses and ages of the stars. These quantities are compared to the results found in Allende Prieto & Lambert (1999), Holmberg et al. (2007), and Takeda (2007), who indirectly determine these same properties by fitting models to observed photometry. I find that for most cases, the models underestimate the radius of the star by ~12%, while in turn they overestimate the effective temperature by ~ 1.5 - 4%, when compared to my directly measured values, with no apparent correlation to the star\u27s metallicity or color index. These overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star\u27s surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~ 1.3 M_sol. Alternatively, these quantities I measure are also compared to direct measurements from a large sample of eclipsing binary stars in Andersen (1991), and excellent agreement is seen within both data sets. Finally, a multi-parameter solution is found to fit color-temperature-metallicity values of the stars in this sample to provide a new calibration of the effective temperature scale for these types of stars. Published work in the field of stellar interferometry and optical spectroscopy of early-type stars are presented in Appendix D and E, respectively

    Non-grey dimming events of KIC 8462852 from GTC spectrophotometry

    Get PDF
    We report ground-based spectrophotometry of KIC 8462852, during its first dimming events since the end of the Kepler mission. The dimmings show a clear colour-signature, and are deeper in visual blue wavelengths than in red ones. The flux loss' wavelength dependency can be described with an \AA ngstr\"om absorption coefficient of 2.19±0.452.19\pm0.45, which is compatible with absorption by optically thin dust with particle sizes on the order of 0.0015 to 0.15 μ\mum. These particles would be smaller than is required to be resistant against blow-out by radiation pressure when close to the star. During occultation events, these particles must be replenished on time-scales of days. If dust is indeed the source of KIC 8462852's dimming events, deeper dimming events should show more neutral colours, as is expected from optically thick absorbers.Comment: 5 pages, accepted for A&A letter

    Predicting Stellar Angular Diameters from VV, ICI_C, HH, KK Photometry

    Get PDF
    Determining the physical properties of microlensing events depends on having accurate angular sizes of the source star. Using long-baseline optical interferometry we are able to measure the angular sizes of nearby stars with uncertainties 2%\leq 2\%. We present empirically derived relations of angular diameters that are calibrated using both a sample of dwarfs/subgiants and a sample of giant stars. These relations are functions of five color indices in the visible and near-infrared, and have uncertainties of 1.8-6.5% depending on the color used. We find that a combined sample of both main-sequence and evolved stars of A-K spectral types is well fit by a single relation for each color considered. We find that in the colors considered, metallicity does not play a statistically significant role in predicting stellar size, leading to a means of predicting observed sizes of stars from color alone.Comment: 8 pages, 1 figure, accepted for publication in MNRA

    Stellar diameters and temperatures – VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

    Get PDF
    We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be θ_(LD) = 0.3848 ± 0.0055 and 0.2254 ± 0.0072 mas for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high-resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_(eff) = 4875 ± 43, 6092 ± 103 K), stellar linear radii (R_* = 0.805 ± 0.016, 1.203 ± 0.061 R_⊙), mean stellar densities (ρ_* = 1.62 ± 0.11, 0.58 ± 0.14 ρ_⊙), planetary radii (R_p = 1.216 ± 0.024, 1.451 ± 0.074 R_(Jup)), and mean planetary densities (ρ_p = 0.605 ± 0.029, 0.196 ± 0.033 ρ_(Jup)) for HD 189733b and HD 209458b, respectively. The stellar parameters for HD 209458, an F9 dwarf, are consistent with indirect estimates derived from spectroscopic and evolutionary modelling. However, we find that models are unable to reproduce the observational results for the K2 dwarf, HD 189733. We show that, for stellar evolutionary models to match the observed stellar properties of HD 189733, adjustments lowering the solar-calibrated mixing-length parameter to α_(MLT) =1.34 need to be employed

    The full spectral radiative properties of Proxima Centauri

    Full text link
    The discovery of Proxima b, a terrestrial temperate planet, presents the opportunity of studying a potentially habitable world in optimal conditions. A key aspect to model its habitability is to understand the radiation environment of the planet in the full spectral domain. We characterize the X-rays to mid-IR radiative properties of Proxima with the goal of providing the top-of-atmosphere fluxes on the planet. We also aim at constraining the fundamental properties of the star. We employ observations from a large number of facilities and make use of different methodologies to piece together the full spectral energy distribution of Proxima. In the high-energy domain, we pay particular attention to the contribution by rotational modulation, activity cycle, and flares so that the data provided are representative of the overall radiation dose received by the atmosphere of the planet. We present the full spectrum of Proxima covering 0.7 to 30000 nm. The integration of the data shows that the top-of-atmosphere average XUV irradiance on Proxima b is 0.293 W m^-2, i.e., nearly 60 times higher than Earth, and that the total irradiance is 877+/-44 W m^-2, or 64+/-3% of the solar constant but with a significantly redder spectrum. We also provide laws for the XUV evolution of Proxima corresponding to two scenarios. Regarding the fundamental properties of Proxima, we find M=0.120+/-0.003 Msun, R=0.146+/-0.007 Rsun, Teff=2980+/-80 K, and L=0.00151+/-0.00008 Lsun. In addition, our analysis reveals a ~20% excess in the 3-30 micron flux of the star that is best interpreted as arising from warm dust in the system. The data provided here should be useful to further investigate the current atmospheric properties of Proxima b as well as its past history, with the overall aim of firmly establishing the habitability of the planet.Comment: 12 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Stellar diameters and temperatures. IV. Predicting stellar angular diameters

    Get PDF
    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry. We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broadband color indices. We empirically show for the first time a dependence on metallicity of these relations using Johnson (B-V) and Sloan (g-r) colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations of stellar angular sizes to date. © 2014. The American Astronomical Society. All rights reserved.
    corecore