1,771 research outputs found

    Montana Forestry Notes, June 1964

    Get PDF
    This is issue 1: Soil Temperatures in the Lubrecht Experimental Foresthttps://scholarworks.umt.edu/montana_forestry_notes/1000/thumbnail.jp

    Macroscopic Equations of Motion for Two Phase Flow in Porous Media

    Full text link
    The established macroscopic equations of motion for two phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore a more general system of macroscopic equations is derived here which incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach which exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equilibrium which shows the qualitative saturation dependence known from experiment. In addition the new equations allow to describe the spatiotemporal changes of residual saturations during immiscible displacement.Comment: 15 pages, Phys. Rev. E (1998), in prin

    Anatomical traits associated with pod rot resistance in peanut.

    Get PDF
    Anatomical traits associated with pod resistance in peanut

    Walking for prevention of cardiovascular disease in men and women: A systematic review of observational studies: Obesity Prevention

    Get PDF
    In this systematic review, walking (a generally accessible activity for a largely sedentary population), was assessed as a preventive risk factor for development of fatal and nonfatal cardiovascular disease (CVD). PubMed, CINHAL, and reference list searches identified 21 peer reviewed publications examining walking in relation to CVD; studies assessing active transportation were excluded. Generally, there were dose-dependent reductions in CVD risk with higher walking duration, distance, energy expenditure, and pace. Associations appeared to be stronger for ischemic stroke than other CVD outcomes such as CHD or hemorrhagic stroke. Adjustment for clinical CVD risk factors, obesity, or other types of physical activity generally attenuated but did not eliminate associations. Because functional status may be an important determinant of walking behavior in adults, potential bias due to pre-existing illness is of concern in all studies reviewed, particularly in case-control studies which ascertain walking retrospectively and yielded the strongest associations. Study findings were consistent with current physical activity recommendations, but opportunities for future research include improvements in measurement of walking and other CVD risk factors, more thorough control for pre-existing illness, examination of mediating or moderating conditions such as obesity, and other analytical issues

    English secondary studentsā€™ thinking about the status of scientific theories: consistent, comprehensive, coherent and extensively evidenced explanations of aspects of the natural world ā€“ or just ā€˜an idea someone hasā€™

    Get PDF
    Teaching about the nature of science (NOS) is seen as a priority for science education in many national contexts. The present paper focuses on one central issue in learning about NOS: understanding the nature and status of scientific theories. A key challenge in teaching about NOS is to persuade students that scientific knowledge is generally robust and reliable, yet also in principle always open to challenge and modification. Theories play a central role, as they are a form of conjectural knowledge that over time may be abandoned, replaced, modified, yet sometimes become well established as current best scientific understanding. The present paper reports on findings from interviews with 13ā€“14 year olds in England where target knowledge presents theories as ā€˜consistent, comprehensive, coherent and extensively evidenced explanations of aspects of the natural worldā€™. Student thinking reflected a two-tier typology of scientific knowledge in which largely unsupported imaginative ideas (ā€˜theoriesā€™) became transformed into fairly definitive knowledge (such as laws) through relatively straightforward testing. These results are considered in relation to research into intellectual development which indicates that effective teaching in this area requires careful scaffolding of student learning, but has potential to contribute to supporting intellectual development across the curriculum.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/09585176.2015.104392

    Skeletal Muscle Fiber Adaptations Following Resistance Training Using Repetition Maximums or Relative Intensity

    Get PDF
    The purpose of the study was to compare the physiological responses of skeletal muscle to a resistance training (RT) program using repetition maximum (RM) or relative intensity (RISR). Fifteen well-trained males underwent RT 3 dĀ·wkāˆ’1 for 10 weeks in either an RM group (n = 8) or RISR group (n = 7). The RM group achieved a relative maximum each day, while the RISR group trained based on percentages. The RM group exercised until muscular failure on each exercise, while the RISR group did not reach muscular failure throughout the intervention. Percutaneous needle biopsies of the vastus lateralis were obtained pre-post the training intervention, along with ultrasonography measures. Dependent variables were: Fiber type-specific cross-sectional area (CSA); anatomical CSA (ACSA); muscle thickness (MT); mammalian target of rapamycin (mTOR); adenosine monophosphate protein kinase (AMPK); and myosin heavy chains (MHC) specific for type I (MHC1), type IIA (MHC2A), and type IIX (MHC2X). Mixed-design analysis of variance and effect size using Hedgeā€™s g were used to assess within- and between-group alterations. RISR statistically increased type I CSA (p = 0.018, g = 0.56), type II CSA (p = 0.012, g = 0.81), ACSA (p = 0.002, g = 0.53), and MT (p \u3c 0.001, g = 1.47). RISR also yielded a significant mTOR reduction (p = 0.031, g = āˆ’1.40). Conversely, RM statistically increased only MT (p = 0.003, g = 0.80). Between-group effect sizes supported RISR for type I CSA (g = 0.48), type II CSA (g = 0.50), ACSA (g = 1.03), MT (g = 0.72), MHC2X (g = 0.31), MHC2A (g = 0.87), and MHC1 (g = 0.59); with all other effects being of trivial magnitude (g \u3c 0.20). Our results demonstrated greater adaptations in fiber size, whole-muscle size, and several key contractile proteins when using RISR compared to RM loading paradigm

    Skeletal Muscle Fiber Adaptations Following Resistance Training Using Repetition Maximums or Relative Intensity

    Get PDF
    The purpose of the study was to compare the physiological responses of skeletal muscle to a resistance training (RT) program using repetition maximum (RM) or relative intensity (RISR). Fifteen well-trained males underwent RT 3 dĀ·wkāˆ’1 for 10 weeks in either an RM group (n = 8) or RISR group (n = 7). The RM group achieved a relative maximum each day, while the RISR group trained based on percentages. The RM group exercised until muscular failure on each exercise, while the RISR group did not reach muscular failure throughout the intervention. Percutaneous needle biopsies of the vastus lateralis were obtained pre-post the training intervention, along with ultrasonography measures. Dependent variables were: Fiber type-specific cross-sectional area (CSA); anatomical CSA (ACSA); muscle thickness (MT); mammalian target of rapamycin (mTOR); adenosine monophosphate protein kinase (AMPK); and myosin heavy chains (MHC) specific for type I (MHC1), type IIA (MHC2A), and type IIX (MHC2X). Mixed-design analysis of variance and effect size using Hedgeā€™s g were used to assess within- and between-group alterations. RISR statistically increased type I CSA (p = 0.018, g = 0.56), type II CSA (p = 0.012, g = 0.81), ACSA (p = 0.002, g = 0.53), and MT (p \u3c 0.001, g = 1.47). RISR also yielded a significant mTOR reduction (p = 0.031, g = āˆ’1.40). Conversely, RM statistically increased only MT (p = 0.003, g = 0.80). Between-group effect sizes supported RISR for type I CSA (g = 0.48), type II CSA (g = 0.50), ACSA (g = 1.03), MT (g = 0.72), MHC2X (g = 0.31), MHC2A (g = 0.87), and MHC1 (g = 0.59); with all other effects being of trivial magnitude (g \u3c 0.20). Our results demonstrated greater adaptations in fiber size, whole-muscle size, and several key contractile proteins when using RISR compared to RM loading paradigms
    • ā€¦
    corecore