2 research outputs found

    Analytical and Sensory Studies on the Release of Sodium from Wheat Bread Crumb

    No full text
    As a basis for sodium reduction, interactions between sodium and wheat bread ingredients and their impact on salt perception in bread crumb were examined. The theoretical sodium binding capacities of wheat proteins revealed that a maximum amount of 0.24% NaCl (based on flour) could be bound in bread crumb by ionic interactions between sodium ions and acidic amino acid side chains. However, the sodium binding capacities of wheat proteins, determined by a magnetic beads assay and a sodium-selective electrode, were only about 0.002% NaCl. They were negligible concerning the sensory perception of saltiness, as 0.075 and 0.3% NaCl were the lowest noticeable differences using bread containing 0 and 1% NaCl as a reference, respectively. Extracting bread crumb in a mastication simulator with ultrapure water, buffer solutions, and artificial and human saliva revealed that interactions between sodium and wheat bread ingredients were sufficiently weak to enable complete sodium extraction during simulated mastication

    Influence of Texture on the Perception of Saltiness in Wheat Bread

    No full text
    As a basis for sodium reduction in bread, the influence of crumb texture on the intensity of saltiness and the release of sodium ions during chewing was investigated. A coarse-pored bread crumb was created by extending the proofing time (90/120 min vs 20/40 min as control), whereas the omission of proofing resulted in a fine-pored crumb (0/0 min). A significantly faster sodium release from the coarse-pored bread compared to the fine-pored bread (constant sample weight) was measured in-mouth and in a mastication simulator. This explained the significantly enhanced salty taste of the 90/120 min bread. Corresponding experiments with constant sample volumes revealed a significantly enhanced saltiness despite similar amounts of extracted sodium during the first seconds of chewing. Therefore, saltiness was influenced both by the velocity of sodium release and by crumb texture. Appropriate modification of crumb texture thus leads to enhanced saltiness, suggesting a new strategy for salt reduction in bread
    corecore