3 research outputs found

    Synthèse de dérivés pyrroliques par régression de cycles et applications biologiques

    No full text
    NANTES-BU Sciences (441092104) / SudocSudocFranceF

    Theoretical Study of the Structures and Hydrogen-Bond Properties of New Alternated Heterocyclic Compounds

    No full text
    International audienceThe conformational preferences of a new his-pyrrole derivative and its his-pyridazine precursor have been investigated through quantum chemistry calculations (HF, DFT(MPWB1K), LMP2) and observations in the solid state. The global energetic minima are planar for both structures, with the conformational preferences being explained by pi-electronic conjugation between the aromatic systems and the occurrence of intramolecular hydrogen bonds (HB). For the bis-pyridazine derivative, the all-anti preferred conformation results front CH center dot center dot Nsp(2) HB whereas the all-syn conformation of the bis-pyrrole is partly due to NH center dot center dot center dot Nsp(2) HB. For both systems, the validity of the theoretical conformational features is confirmed through the excellent agreement with the experimental data available. Calculations of electrostatic potential computed on the molecular surface of the various structures and their building blocks allow the variations to be rationalized in terms of molecular structure and are used to analyze the HB donor and acceptor sites of the compounds. The HB interaction sites predicted from the quantum chemical calculations are confirmed through the FIB interactions observed in relevant crystal structures

    Electrochemical synthesis and characterisation of alternating tripyridyl-dipyrrole molecular strands with multiple nitrogen-based donor-acceptor binding sites.

    No full text
    International audienceSynthesis of alternating pyridine-pyrrole molecular strands composed of two electron-rich pyrrole units (donors) sandwiched between three pyridinic cores (acceptors) is described. The envisioned strategy was a smooth electrosynthesis process involving ring contraction of corresponding tripyridyl-dipyridazine precursors. 2,6-Bis[6-(pyridazin-3-yl)]pyridine ligands 2a-c bearing pyridine residues at the terminal positions were prepared in suitable quantities by a Negishi metal cross-coupling procedure. The yields of heterocyclic coupling between 2-pyridyl zinc bromide reagents 12a-c and 2,6-bis(6-trifluoromethanesulfonylpyridazin-3-yl)pyridine increased from 68 to 95% following introduction of electron-donating methyl groups on the metallated halogenopyridine units. Favorable conditions for preparative electrochemical reduction of tripyridyl-dipyridazines 2b,c were established in THF/acetate buffer (pH 4.6)/acetonitrile to give the targeted 2,6-bis[5-(pyridin-2-yl)pyrrol-2-yl]pyridines 1b and 1c in good yields. The absorption behavior of the donor-acceptor tripyridyl-dipyrrole ligands was evaluated and compared to theoretical calculations. Highly fluorescent properties of these chromophores were found (ν(em)≈2 × 10(4) cm(-1) in MeOH and CH(2)Cl(2)), and both pyrrolic ligands exhibit a remarkable quantum yield in CH(2)Cl(2) (φ(f)=0.10). Structural studies in the solid state established the preferred cis conformation of the dipyrrolic ligands, which adopting a planar arrangement with an embedded molecule of water having a complexation energy exceeding 10 kcal mol(-1). The ability of the tripyridyl-dipyrrole to complex two copper(II) ions in a pentacoordinate square was investigated
    corecore