3,156 research outputs found

    Can a gravitational wave and a magnetic monopole coexist?

    Full text link
    We investigate the behavior of small perturbations around the Kaluza-Klein monopole in the five dimensional space-time. We find that the even parity gravitational wave does not propagate in the five dimensional space-time with Kaluza-Klein monopole provided that the gravitational wave is constant in the fifth direction. We conclude that a gravitational wave and a U(1) magnetic monopole do not coexist in five dimensional Kaluza-Klein spacetime.Comment: 10 pages, LaTeX. To appear in Modern Physics Letters

    Propulsion system tests on a full scale Centaur vehicle to investigate 3-burn mission capability of the D-lT configuration

    Get PDF
    Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight

    Tests of a proximity focusing RICH with aerogel as radiator

    Full text link
    Using aerogel as radiator and multianode PMTs for photon detection, a proximity focusing Cherenkov ring imaging detector has been constructed and tested in the KEK π\pi2 beam. The aim is to experimentally study the basic parameters such as resolution of the single photon Cherenkov angle and number of detected photons per ring. The resolution obtained is well approximated by estimates of contributions from pixel size and emission point uncertainty. The number of detected photons per Cherenkov ring is in good agreement with estimates based on aerogel and detector characteristics. The values obtained turn out to be rather low, mainly due to Rayleigh scattering and to the relatively large dead space between the photocathodes. A light collection system or a higher fraction of the photomultiplier active area, together with better quality aerogels are expected to improve the situation. The reduction of Cherenkov yield, for charged particle impact in the vicinity of the aerogel tile side wall, has also been measured.Comment: 4 pages, 8 figure

    Planar CuO_2 hole density estimation in multilayered high-T_c cuprates

    Full text link
    We report that planar CuO_2 hole densities in high-T_c cuprates are consistently determined by the Cu-NMR Knight shift. In single- and bi-layered cuprates, it is demonstrated that the spin part of the Knight shift K_s(300 K) at room temperature monotonically increases with the hole density pp from underdoped to overdoped regions, suggesting that the relationship of K_s(300 K) vs. p is a reliable measure to determine p. The validity of this K_s(300 K)-p relationship is confirmed by the investigation of the p-dependencies of hyperfine magnetic fields and of spin susceptibility for single- and bi-layered cuprates with tetragonal symmetry. Moreover, the analyses are compared with the NMR data on three-layered Ba_2Ca_2Cu_3O_6(F,O)_2, HgBa_2Ca_2Cu_3O_{8+delta}, and five-layered HgBa_2Ca_4Cu_5O_{12+delta}, which suggests the general applicability of the K_s(300 K)-p relationship to multilayered compounds with more than three CuO_2 planes. We remark that the measurement of K_s(300 K) enables us to separately estimate p for each CuO_2 plane in multilayered compounds, where doped hole carriers are inequivalent between outer CuO_2 planes and inner CuO_2 planes.Comment: 7 pages, 5 figures, 2 Tables, to be published in Physical Review

    Doping Dependence of the in-Plane Transition in Co3_3Sn2_2S2_2

    Full text link
    In Co3_3Sn2_2S2_2 two transitions are observed, the main one to a ferromagnetic state at TC=174T_C = 174 K and the second one, involving in-plane components at TP=127T_P = 127 K. We follow their doping dependence as Sn is replaced with In, which causes a reduction of TCT_C and TPT_P. Importantly, both transitions follow the same doping dependence, indicating a single energy scale involved with both processes.Comment: accepted as a short note in JPSJ; a continuation of work published in arXiv:2211.01483 and https://doi.org/10.1103/PhysRevB.106.L18040

    Indication of antiferromagnetic interaction between paramagnetic Co ions in the diluted magnetic semiconductor Zn1x_{1-x}Cox_{x}O

    Full text link
    The magnetic properties of Zn1x_{1-x}Cox_xO (x=0.07x=0.07 and 0.10) thin films, which were homo-epitaxially grown on a ZnO(0001) substrates with varying relatively high oxygen pressure, have been investigated using x-ray magnetic circular dichroism (XMCD) at Co 2p2p core-level absorption edge. The line shapes of the absorption spectra are the same in all the films and indicate that the Co2+^{2+} ions substitute for the Zn sites. The magnetic-field and temperature dependences of the XMCD intensity are consistent with the magnetization measurements, indicating that except for Co there are no additional sources for the magnetic moment, and demonstrate the coexistence of paramagnetic and ferromagnetic components in the homo-epitaxial Zn1x_{1-x}Cox_{x}O thin films, in contrast to the ferromagnetism in the hetero-epitaxial Zn1x_{1-x}Cox_{x}O films studied previously. The analysis of the XMCD intensities using the Curie-Weiss law reveals the presence of antiferromagnetic interaction between the paramagnetic Co ions. Missing XMCD intensities and magnetization signals indicate that most of Co ions are non-magnetic probably because they are strongly coupled antiferromagnetically with each other. Annealing in a high vacuum reduces both the paramagnetic and ferromagnetic signals. We attribute the reductions to thermal diffusion and aggregation of Co ions with antiferromagnetic nanoclusters in Zn1x_{1-x}Cox_{x}O.Comment: 21 pages, 7 figures, accepted for Physical Review

    Non-Fermi-Liquid Scaling in Ce(Ru_{0.5}Rh_{0.5})_2Si_2

    Full text link
    We study the temperature and field dependence of the magnetic and transport properties of the non-Fermi-liquid compound Ce(Ru_{1-x}Rh_x)_2Si_2 at x=0.5. For fields \lesssim 0.1T the experimental results show signatures of the presence of Kondo-disorder, expected to be large at this concentration. For larger fields, however, magnetic and transport properties are controlled by the coupling of the conduction electrons to critical spin-fluctuations. The temperature dependence of the susceptibility as well as the scaling properties of the magnetoresistance are in very good agreement with the predictions of recent dynamical mean-field theories of Kondo alloys close to a spin-glass quantum critical point.Comment: 4 pages, 4 figures. Improved discussion. To appear in Phys. Rev. Let
    corecore