8 research outputs found
Medicinal chemistry perspective on targeting mono-ADP-ribosylating PARPs with small molecules
Abstract
Major advances have recently defined functions for human mono-ADP-ribosylating PARP enzymes (mono-ARTs), also opening up potential applications for targeting them to treat diseases. Structural biology combined with medicinal chemistry has allowed the design of potent small molecule inhibitors which typically bind to the catalytic domain. Most of these inhibitors are at the early stages, but some have already a suitable profile to be used as chemical tools. One compound targeting PARP7 has even progressed to clinical trials. In this review, we collect inhibitors of mono-ARTs with a typical “H–Y−Φ” motif (Φ = hydrophobic residue) and focus on compounds that have been reported as active against one or a restricted number of enzymes. We discuss them from a medicinal chemistry point of view and include an analysis of the available crystal structures, allowing us to craft a pharmacophore model that lays the foundation for obtaining new potent and more specific inhibitors
4-(phenoxy) and 4-(benzyloxy)benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10
Abstract
Human Diphtheria toxin-like ADP-ribosyltranferases (ARTD) 10 is an enzyme carrying out mono-ADP-ribosylation of a range of cellular proteins and affecting their activities. It shuttles between cytoplasm and nucleus and influences signaling events in both compartments, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and S phase DNA repair. Furthermore, overexpression of ARTD10 induces cell death. We recently reported on the discovery of a hit compound, OUL35 (compound 1), with 330 nM potency and remarkable selectivity towards ARTD10 over other enzymes in the human protein family. Here we aimed at establishing a structure-activity relationship of the OUL35 scaffold, by evaluating an array of 4-phenoxybenzamide derivatives. By exploring modifications on the linker between the aromatic rings, we identified also a 4-(benzyloxy)benzamide derivative, compound 32, which is potent (IC50 = 230 nM) and selective, and like OUL35 was able to rescue HeLa cells from ARTD10-induced cell death. Evaluation of an enlarged series of derivatives produced detailed knowledge on the structural requirements for ARTD10 inhibition and allowed the discovery of further tool compounds with submicromolar cellular potency that will help in understanding the roles of ARTD10 in biological systems
2-phenylquinazolinones as dual-activity tankyrase-kinase inhibitors
Abstract
Tankyrases (TNKSs) are enzymes specialized in catalyzing poly-ADP-ribosylation of target proteins. Several studies have validated TNKSs as anti-cancer drug targets due to their regulatory role in Wnt/β-catenin pathway. Recently a lot of effort has been put into developing more potent and selective TNKS inhibitors and optimizing them towards anti-cancer agents. We noticed that some 2-phenylquinazolinones (2-PQs) reported as CDK9 inhibitors were similar to previously published TNKS inhibitors. In this study, we profiled this series of 2-PQs against TNKS and selected kinases that are involved in the Wnt/β-catenin pathway. We found that they were much more potent TNKS inhibitors than they were CDK9/kinase inhibitors. We evaluated the compound selectivity to tankyrases over the ARTD enzyme family and solved co-crystal structures of the compounds with TNKS2. Comparative structure-based studies of the catalytic domain of TNKS2 with selected CDK9 inhibitors and docking studies of the inhibitors with two kinases (CDK9 and Akt) revealed important structural features, which could explain the selectivity of the compounds towards either tankyrases or kinases. We also discovered a compound, which was able to inhibit tankyrases, CDK9 and Akt kinases with equal μM potency