70 research outputs found

    Calculation of The Band Gap Energy and Study of Cross Luminescence in Alkaline-Earth Dihalide Crystals

    Full text link
    The band gap energy as well as the possibility of cross luminescence processes in alkaline-earth dihalide crystals have been calculated using the ab initio Perturbed-Ion (PI) model. The gap is calculated in several ways: as a difference between one-electron energy eigenvalues and as a difference between total energies of appropriate electronic states of the crystal, both at the HF level and with inclusion of Coulomb correlation effects. In order to study the possibility of ocurrence of cross luminescence in these materials, the energy difference between the valence band and the upmost core band for some representative crystals has been calculated. Both calculated band gap energies and cross luminescence predictions compare very well with the available experimental results.Comment: LaTeX file containing 8 pages plus 1 postscript figure. Final version accepted for publication in The Journal of the Physical Society of Japan. It contains a more complete list of references, as well as a more detailed comparison with previous theoretical investigations on the subjec

    Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes

    Get PDF
    The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change–cryosphere interactions that affect Arctic amplification.</p
    corecore