23 research outputs found

    4d Simplicial Quantum Gravity Interacting with Gauge Matter Fields

    Get PDF
    The effect of coupling non-compact U(1)U(1) gauge fields to four dimensional simplicial quantum gravity is studied using strong coupling expansions and Monte Carlo simulations. For one gauge field the back-reaction of the matter on the geometry is weak. This changes, however, as more matter fields are introduced. For more than two gauge fields the degeneracy of random manifolds into branched polymers does not occur, and the branched polymer phase seems to be replaced by a new phase with a negative string susceptibility exponent γ\gamma and fractal dimension dH4d_H \approx 4.Comment: latex2e, 10 pages incorporating 2 tables and 3 figures (using epsf

    The Strong-Coupling Expansion in Simplicial Quantum Gravity

    Full text link
    We construct the strong-coupling series in 4d simplicial quantum gravity up to volume 38. It is used to calculate estimates for the string susceptibility exponent gamma for various modifications of the theory. It provides a very efficient way to get a first view of the phase structure of the models.Comment: LATTICE98(surfaces), 3 pages, 4 eps figure

    Geometry of Reduced Supersymmetric 4D Yang-Mills Integrals

    Get PDF
    We study numerically the geometric properties of reduced supersymmetric non-compact SU(N) Yang-Mills integrals in D=4 dimensions, for N = 2,3, ..., 8. We show that in the range of large eigenvalues of the matrices A^mu, the original D-dimensional rotational symmetry is spontaneously broken and the dominating field configurations become one-dimensional, as anticipated by studies of the underlying surface theory. We also discuss possible implications of our results for the IKKT model.Comment: 14 pages, Latex + 3 eps fig., a comment added to the conclusion

    Voice-based assessments of trustworthiness, competence, and warmth in blind and sighted adults

    Get PDF
    The study of voice perception in congenitally blind individuals allows researchers rare insight into how a lifetime of visual deprivation affects the development of voice perception. Previous studies have suggested that blind adults outperform their sighted counterparts in low-level auditory tasks testing spatial localization and pitch discrimination, as well as in verbal speech processing; however, blind persons generally show no advantage in nonverbal voice recognition or discrimination tasks. The present study is the first to examine whether visual experience influences the development of social stereotypes that are formed on the basis of nonverbal vocal characteristics (i.e., voice pitch). Groups of 27 congenitally or early-blind adults and 23 sighted controls assessed the trustworthiness, competence, and warmth of men and women speaking a series of vowels, whose voice pitches had been experimentally raised or lowered. Blind and sighted listeners judged both men’s and women’s voices with lowered pitch as being more competent and trustworthy than voices with raised pitch. In contrast, raised-pitch voices were judged as being warmer than were lowered-pitch voices, but only for women’s voices. Crucially, blind and sighted persons did not differ in their voice-based assessments of competence or warmth, or in their certainty of these assessments, whereas the association between low pitch and trustworthiness in women’s voices was weaker among blind than sighted participants. This latter result suggests that blind persons may rely less heavily on nonverbal cues to trustworthiness compared to sighted persons. Ultimately, our findings suggest that robust perceptual associations that systematically link voice pitch to the social and personal dimensions of a speaker can develop without visual input

    Coefficients of Propeller-hull Interaction in Propulsion System of Inland Waterway Vessels with Stern Tunnels

    No full text
    Propeller-hull interaction coefficients - the wake fraction and the thrust deduction factor - play significant role in design of propulsion system of a ship. In the case of inland waterway vessels the reliable method of predicting these coefficients in early design stage is missing. Based on the outcomes from model tests and from numerical computations the present authors show that it is difficult to determine uniquely the trends in change of wake fraction and thrust deduction factor resulting from the changes of hull form or operating conditions. Nowadays the resistance and propulsion model tests of inland waterway vessels are carried out rarely because of relatively high costs. On the other hand, the degree of development of computational methods enables’ to estimate the reliable values o interaction coefficients. The computations referred to in the present paper were carried out using the authors’ own software HPSDKS and the commercial software Ansys Fluent

    Analysis of hull resistance of pushed barges in shallow water

    No full text
    These authors performed a set of numerical calculations of water flow around pushed barges differing to each other by bow forms. The calculations were executed by means of FLUENT computer software. Turbulent free-surface flow of viscous liquid was considered. In this paper the calculated values of barge hull resistance split into bow, cylindrical and stern part components, have been compared and presented

    CFD Based Hull Hydrodynamic Forces for Simulation of Ship Manoeuvres

    No full text
    There have been developed numerous mathematical models describing the motion of a ship. In opinion of present authors the CFD is mature enough to determine with confidence the hydrodynamic characteristics necessary to simulate ship manoeuvres. In this paper the authors present the attempt to determine the hull hydrodynamic forces using the results of CFD computations of ship flow. Results show qualitative agreement with reference data and reveal shortcomings due to simplifying assumptions applied in CFD computations

    The effect of limited depth and width of waterway on performance of ducted propellers

    No full text
    Model tests of propeller performance in bollard conditions, in deep and shallow water, were carried out at Ship Design and Research Centre in Gdansk. Corresponding calculations of propeller performance with account for finite dimensions of canal cross-section were carried out at Wroclaw University of Technology by using their own theoretical model of propeller -hull interaction. The calculations were carried out in model scale, at the same water depth as in model tests. For given hull form, propeller geometry and canal cross-section the HPSDK computer code was used to calculate wake fraction, as well as propeller thrust, torque and efficiency. The distribution of pressure on waterway bottom and ship sinkage were also determined
    corecore