35 research outputs found

    Bacterial Leaf Symbiosis in Angiosperms: Host Specificity without Co-Speciation

    Get PDF
    Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5–23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis

    Burkholderia cepacia complex species: health hazards and biotechnological potential

    No full text
    The Burkholderia cepacia complex is a group of nine closely related bacterial species that have useful properties in the natural environment as plant pest antagonists, plant growth promoters and degradative agents of toxic substances. Because these species are human opportunistic pathogens, especially in cystic fibrosis patients, biotechnological applications that involve environmental releases have been severely restricted. Recent progress in understanding the taxonomy, epidemiology and ecology of the B. cepacia complex species has unravelled considerable variability in their pathogenicity and ecological properties, which has set the basis for a reassessment of the risk posed by individual species to human health
    corecore