6 research outputs found

    The Rv2807 target gene: a determining factor to directly detect Mycobacterium bovis from suspected bovine tuberculosis lesions

    Get PDF
    Bovine tuberculosis (bTB) is a zoonosis caused by Mycobacterium bovis, a species belonging to the Mycobacterium tuberculosis complex (MTC) group. Direct bTB diagnosis from suggestive lesions can be performed by nested q-PCR targeting the Rv2807 gene present in the MTC group, as well as the TbD1 gene, present in M. bovis. In this context, the aim of the present study was to assess the importance of considering positive MTC results for the Rv2807 target gene obtained through the nested real time polymerase chain reaction (nested q-PCR) applied to samples obtained directly from suspected bTB lesions. A total of 174 samples of suggestive bTB caseous lesions were obtained during cattle slaughter in slaughterhouses in the state of Mato Grosso, Brazil. DNA was extracted from the lesions and nested q-PCR was performed to detect both MTC and M. bovis. Both samples positive for the Rv2807 (41/174) and TbD1 (29/174) were submitted to bacterial culturing (23/41), and the DNA of the isolates (23) was extracted and submitted again to nested q-PCR. The Rv2807 gene (MTC) was previously amplified by nested q-PCR directly from the lesions, although the TbD1 gene specific for M. bovis was not amplified previously in four of the successfully isolated samples (4/23), only following isolation, and only the Rv2807 gene was amplified before and after isolation. In conclusion, the target gene Rv2807 (MTC) exhibited higher positivity in the analyzed samples compared to the TbD1 gene (M. bovis)

    Data_Sheet_2_Genomic analysis of Mycobacterium tuberculosis variant bovis strains isolated from bovine in the state of Mato Grosso, Brazil.PDF

    No full text
    The species Mycobacterium tuberculosis variant bovis (M. tuberculosis var. bovis) is associated with tuberculosis, mainly in cattle and buffaloes. This pathogen has the potential to infect other mammals, including humans. Tuberculosis caused by M. tuberculosis var. bovis is a zoonosis clinically identical to tuberculosis caused by Mycobacterium tuberculosis, and the recommended treatment in humans results in the use of antibiotics. In this study, we used the whole genome sequencing (WGS) methodology Illumina NovaSeq 6000 System platform to characterize the genome of M. tuberculosis var. bovis in cattle circulating in Mato Grosso, identify mutations related to drug resistance genes, compare with other strains of M. tuberculosis var. bovis brazilian and assess potential drug resistance. Four isolates of M. tuberculosis var. bovis of cattle origin representing the main livestock circuits, which had been more prevalent in previous studies in the state of Mato Grosso, were selected for the genomic study. The genome sizes of the sequenced strains ranged from 4,306,423 to 4,332,964 bp, and the GC content was 65.6%. The four strains from Mato Grosso presented resistance genes to pncA (pyrazinamide), characterized as drug-resistant strains. In addition to verifying several point mutations in the pncA, rpsA, rpsL, gid, rpoB, katG, gyrB, gyrA, tlyA, embA, embB, embC, fgd, fbiB, and fbiC genes, these genes were similar to antibiotic resistance in more than 92% of the Brazilian strains. Therefore, our results indicated a high genetic diversity between our isolates and other M. tuberculosis var. bovis isolated in Brazil. Thus, multiple transmission routes of this pathogen may be present in the production chain. So, to achieve a bovine tuberculosis-free health status, the use of the WGS as a control and monitoring tool will be crucial to determine these transmission routes.</p

    Data_Sheet_1_Genomic analysis of Mycobacterium tuberculosis variant bovis strains isolated from bovine in the state of Mato Grosso, Brazil.PDF

    No full text
    The species Mycobacterium tuberculosis variant bovis (M. tuberculosis var. bovis) is associated with tuberculosis, mainly in cattle and buffaloes. This pathogen has the potential to infect other mammals, including humans. Tuberculosis caused by M. tuberculosis var. bovis is a zoonosis clinically identical to tuberculosis caused by Mycobacterium tuberculosis, and the recommended treatment in humans results in the use of antibiotics. In this study, we used the whole genome sequencing (WGS) methodology Illumina NovaSeq 6000 System platform to characterize the genome of M. tuberculosis var. bovis in cattle circulating in Mato Grosso, identify mutations related to drug resistance genes, compare with other strains of M. tuberculosis var. bovis brazilian and assess potential drug resistance. Four isolates of M. tuberculosis var. bovis of cattle origin representing the main livestock circuits, which had been more prevalent in previous studies in the state of Mato Grosso, were selected for the genomic study. The genome sizes of the sequenced strains ranged from 4,306,423 to 4,332,964 bp, and the GC content was 65.6%. The four strains from Mato Grosso presented resistance genes to pncA (pyrazinamide), characterized as drug-resistant strains. In addition to verifying several point mutations in the pncA, rpsA, rpsL, gid, rpoB, katG, gyrB, gyrA, tlyA, embA, embB, embC, fgd, fbiB, and fbiC genes, these genes were similar to antibiotic resistance in more than 92% of the Brazilian strains. Therefore, our results indicated a high genetic diversity between our isolates and other M. tuberculosis var. bovis isolated in Brazil. Thus, multiple transmission routes of this pathogen may be present in the production chain. So, to achieve a bovine tuberculosis-free health status, the use of the WGS as a control and monitoring tool will be crucial to determine these transmission routes.</p

    Data_Sheet_4_Genomic analysis of Mycobacterium tuberculosis variant bovis strains isolated from bovine in the state of Mato Grosso, Brazil.PDF

    No full text
    The species Mycobacterium tuberculosis variant bovis (M. tuberculosis var. bovis) is associated with tuberculosis, mainly in cattle and buffaloes. This pathogen has the potential to infect other mammals, including humans. Tuberculosis caused by M. tuberculosis var. bovis is a zoonosis clinically identical to tuberculosis caused by Mycobacterium tuberculosis, and the recommended treatment in humans results in the use of antibiotics. In this study, we used the whole genome sequencing (WGS) methodology Illumina NovaSeq 6000 System platform to characterize the genome of M. tuberculosis var. bovis in cattle circulating in Mato Grosso, identify mutations related to drug resistance genes, compare with other strains of M. tuberculosis var. bovis brazilian and assess potential drug resistance. Four isolates of M. tuberculosis var. bovis of cattle origin representing the main livestock circuits, which had been more prevalent in previous studies in the state of Mato Grosso, were selected for the genomic study. The genome sizes of the sequenced strains ranged from 4,306,423 to 4,332,964 bp, and the GC content was 65.6%. The four strains from Mato Grosso presented resistance genes to pncA (pyrazinamide), characterized as drug-resistant strains. In addition to verifying several point mutations in the pncA, rpsA, rpsL, gid, rpoB, katG, gyrB, gyrA, tlyA, embA, embB, embC, fgd, fbiB, and fbiC genes, these genes were similar to antibiotic resistance in more than 92% of the Brazilian strains. Therefore, our results indicated a high genetic diversity between our isolates and other M. tuberculosis var. bovis isolated in Brazil. Thus, multiple transmission routes of this pathogen may be present in the production chain. So, to achieve a bovine tuberculosis-free health status, the use of the WGS as a control and monitoring tool will be crucial to determine these transmission routes.</p

    Data_Sheet_3_Genomic analysis of Mycobacterium tuberculosis variant bovis strains isolated from bovine in the state of Mato Grosso, Brazil.PDF

    No full text
    The species Mycobacterium tuberculosis variant bovis (M. tuberculosis var. bovis) is associated with tuberculosis, mainly in cattle and buffaloes. This pathogen has the potential to infect other mammals, including humans. Tuberculosis caused by M. tuberculosis var. bovis is a zoonosis clinically identical to tuberculosis caused by Mycobacterium tuberculosis, and the recommended treatment in humans results in the use of antibiotics. In this study, we used the whole genome sequencing (WGS) methodology Illumina NovaSeq 6000 System platform to characterize the genome of M. tuberculosis var. bovis in cattle circulating in Mato Grosso, identify mutations related to drug resistance genes, compare with other strains of M. tuberculosis var. bovis brazilian and assess potential drug resistance. Four isolates of M. tuberculosis var. bovis of cattle origin representing the main livestock circuits, which had been more prevalent in previous studies in the state of Mato Grosso, were selected for the genomic study. The genome sizes of the sequenced strains ranged from 4,306,423 to 4,332,964 bp, and the GC content was 65.6%. The four strains from Mato Grosso presented resistance genes to pncA (pyrazinamide), characterized as drug-resistant strains. In addition to verifying several point mutations in the pncA, rpsA, rpsL, gid, rpoB, katG, gyrB, gyrA, tlyA, embA, embB, embC, fgd, fbiB, and fbiC genes, these genes were similar to antibiotic resistance in more than 92% of the Brazilian strains. Therefore, our results indicated a high genetic diversity between our isolates and other M. tuberculosis var. bovis isolated in Brazil. Thus, multiple transmission routes of this pathogen may be present in the production chain. So, to achieve a bovine tuberculosis-free health status, the use of the WGS as a control and monitoring tool will be crucial to determine these transmission routes.</p
    corecore