42 research outputs found

    Optimization of material distributions in fast breeder reactors

    Get PDF
    "MIT-4105-6."Based on a Sc. D. thesis submitted by C.P. Tzanos to the Dept. of Nuclear Engineering, 1971Includes bibliographical references (pages 188-190)AT(30-1)-410

    Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.

    Get PDF
    To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D simulations were performed to compare heat transfer predictions from CFD and the correlations. Section III of this document presents the results of this analysis

    Progress report no. 2

    Get PDF
    Statement of responsibility on title-page reads: Editors: I.A. Forbes, M.J. Driscoll, N.C. Rasmussen, D.D. Lanning and I. Kaplan; Contributors: S.T. Brewer, G.J. Brown, P.DeLaquil, III, M.J. Driscoll, I.A. Forbes, C.W. Forsberg, E.P. Gyftopoulos, P.L. Hendrick, C.S. Kang, I. Kaplan, J.L. Klucar, D.D. Lanning, T.C. Leung, E.A. Mason, N.R. Ortiz, N.A. Passman, N.C. Rasmussen, I.C. Rickard, V.C. Rogers, G.E. Sullivan, A.T. Supple, and C. P. TzanosIncludes bibliographical referencesProgress report; June 30, 1971U.S. Atomic Energy Commission contract AT(11-1)306

    Progress report no. 4

    Get PDF
    Statement of responsibility on title-page reads: editors: M.J. Driscoll, D.D. Lanning, I. Kaplan, A.T. Supple ; contributors: A. Alvim, G.J. Brown, J.K. Chan, T.P. Choong, M.J. Driscoll, G. A. Ducat, I.A. Forbes, M.V. Gregory, S.Y. Ho, C.M. Hove, O. K. Kadiroglu, R.J. Kennerley, D.D. Lanning, J.L. Lazewatsky, L. Lederman, A.S. Leveckis, V.A. Miethe, P. A. Scheinert, A.M. Thompson, N.E. Todreas, C.P. Tzanos, and P.J. WoodIncludes bibliographical referencesProgress report; June 30, 1973U.S. Atomic Energy Commission contract: AT(11-1)225
    corecore