1,376 research outputs found

    Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3.

    Get PDF
    CC chemokine ligand 5 (CCL5) and CCL3 are critical for immune surveillance and inflammation. Consequently, they are linked to the pathogenesis of many inflammatory conditions and are therapeutic targets. Oligomerization and glycosaminoglycan (GAG) binding of CCL5 and CCL3 are vital for the functions of these chemokines. Our structural and biophysical analyses of human CCL5 reveal that CCL5 oligomerization is a polymerization process in which CCL5 forms rod-shaped, double-helical oligomers. This CCL5 structure explains mutational data and offers a unified mechanism for CCL3, CCL4, and CCL5 assembly into high-molecular-weight, polydisperse oligomers. A conserved, positively charged BBXB motif is key for the binding of CC chemokines to GAG. However, this motif is partially buried when CCL3, CCL4, and CCL5 are oligomerized; thus, the mechanism by which GAG binds these chemokine oligomers has been elusive. Our structures of GAG-bound CCL5 and CCL3 oligomers reveal that these chemokine oligomers have distinct GAG-binding mechanisms. The CCL5 oligomer uses another positively charged and fully exposed motif, KKWVR, in GAG binding. However, residues from two partially buried BBXB motifs along with other residues combine to form a GAG-binding groove in the CCL3 oligomer. The N termini of CC chemokines are shown to be involved in receptor binding and oligomerization. We also report an alternative CCL3 oligomer structure that reveals how conformational changes in CCL3 N termini profoundly alter its surface properties and dimer-dimer interactions to affect GAG binding and oligomerization. Such complexity in oligomerization and GAG binding enables intricate, physiologically relevant regulation of CC chemokine functions

    Single channel wireless EEG device for real-time fatigue level detection

    Full text link
    © 2015 IEEE. Driver fatigue problem is one of the important factors of traffic accidents. Recent years, many research had investigated that using EEG signals can effectively detect driver's drowsiness level. However, real-time monitoring system is required to apply these fatigue level detection techniques in the practical application, especially in the real-road driving. Therefore, it required less channels, portable and wireless, real-time monitoring and processing techniques for developing the real-time monitoring system. In this study, we develop a single channel wireless EEG device which can real-time detect driver's fatigue level on the mobile device such as smart phone or tablet. The developed device is investigated to obtain a better and precise understanding of brain activities of mental fatigue under driving, which is of great benefit for devolvement of detection of driving fatigue system. This system consists of a Bluetooth-enabled one channel EEG, a regression model, and smartphone, which was a platform recording and transforming the raw EEG data to useful driving status. In the experiment, this was a sustained-attention driving task to implement in a virtual-reality (VR) driving simulator. To training model and develop the system, we were performed for 15 subjects to study Electroencephalography (EEG) brain dynamics by using a mobile and wireless EEG device. Based on the outstanding training results, the leave-one-subject-out cross validation test obtained 90% fatigue detection accuracy. These results indicate that the combination of a smartphone and wireless EEG device constitutes an effective and easy wearable solution for detecting and preventing driver fatigue in real driving environments

    Extremal solutions for p-Laplacian fractional integro-differential equation with integral conditions on infinite intervals via iterative computation

    Get PDF
    We study the extremal solutions of a class of fractional integro-differential equation with integral conditions on infinite intervals involving the p-Laplacian operator. By means of the monotone iterative technique and combining with suitable conditions, the existence of the maximal and minimal solutions to the fractional differential equation is obtained. In addition, we establish iterative schemes for approximating the solutions, which start from the known simple linear functions. Finally, an example is given to confirm our main results

    Approaches for estimating minimal clinically important differences in systemic lupus erythematosus.

    Get PDF
    A minimal clinically important difference (MCID) is an important concept used to determine whether a medical intervention improves perceived outcomes in patients. Prior to the introduction of the concept in 1989, studies focused primarily on statistical significance. As most recent clinical trials in systemic lupus erythematosus (SLE) have failed to show significant effects, determining a clinically relevant threshold for outcome scores (that is, the MCID) of existing instruments may be critical for conducting and interpreting meaningful clinical trials as well as for facilitating the establishment of treatment recommendations for patients. To that effect, methods to determine the MCID can be divided into two well-defined categories: distribution-based and anchor-based approaches. Distribution-based approaches are based on statistical characteristics of the obtained samples. There are various methods within the distribution-based approach, including the standard error of measurement, the standard deviation, the effect size, the minimal detectable change, the reliable change index, and the standardized response mean. Anchor-based approaches compare the change in a patient-reported outcome to a second, external measure of change (that is, one that is more clearly understood, such as a global assessment), which serves as the anchor. Finally, the Delphi technique can be applied as an adjunct to defining a clinically important difference. Despite an abundance of methods reported in the literature, little work in MCID estimation has been done in the context of SLE. As the MCID can help determine the effect of a given therapy on a patient and add meaning to statistical inferences made in clinical research, we believe there ought to be renewed focus on this area. Here, we provide an update on the use of MCIDs in clinical research, review some of the work done in this area in SLE, and propose an agenda for future research

    The emergence of the 2013 H7N9 and related viruses in China

    Get PDF
    Promising Investigator ScholarshipPoster Session: News and Views from the H7N9 OutbreakBackground: The novel H7N9 influenza A virus first detected in March 2013 has caused more than 130 cases of human infection in China, resulting in 39 deaths. This virus is a reassortant of H7, N9 and H9N2 avian influenza viruses and carries some amino acids linked to mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully understood. Materials and Methods: Following the initial reports of H7N9 influenza infection in humans, field surveillance was conducted during 4th-18th April in Zhejiang, Shandong and Guangdong provinces. Pairs of oropharyngeal and cloacal samples from chickens and other poultry, together with faecal and water samples from live poultry markets (LPMs), farms and wetlands were collected for virus isolation and whole genomic sequencing. H7, N9, N7 and H9N2 archived isolates, obtained during previous influenza surveillance between 2000-2013 in southern China, were also sequenced and phylogenetically analyzed to pinpoint the genesis of the H7N9 and a related H7N7 virus. The infectivity and pathology of H7N9 and H7N7 viruses were tested in a ferret model. Results: Through a combination of active surveillance, screening of virus archives, and evolutionary analyses, we found that H7 viruses have independently transferred from domestic ducks to chickens in China on at least two occasions. Subsequently they reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related but previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at LPMs that appear to be the immediate source of human infections. In ferrets this virus caused a productive infection and pneumonia. Virus was shed via the nasal route and transmitted to physical contact and some airborne-exposed animals. Like the H7N9 virus, the H7N7 virus was also mainly isolated from chickens at LPMs and it could efficiently infect ferrets, be shed via the nasal and rectal routes, and cause severe pneumonia. Conclusions: These findings provide a clear picture showing how the current H7N9 human viruses emerged. Domestic ducks act as primary vectors to acquire and maintain diversified viruses from migratory birds, and facilitate different subtype combinations between H7 and N9 or N7 viruses and interspecies transmissions to chickens. After being introduced, the H7N9 or H7N7 viruses reassorted with enzootic H9N2 viruses and formed the current reassortant H7N9 or H7N7 viruses seen in chickens. This likely led to outbreaks in chickens, resulting in the rapid spread of the novel reassortant H7N9 virus through LPMs, which then became the source of human infections. Whether the H7N9 outbreak lineage will, or has, become enzootic in China needs further investigation. Our results also indicate that H7 viruses pose a broader threat than the current H7N9 virus. Continued prevalence of this family of H7 viruses in poultry could lead to further sporadic human infections, with an ongoing risk that the virus might acquire efficient human-to-human transmissibility.published_or_final_versio

    Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    Get PDF
    Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs

    Easy detection of chromatin binding proteins by the histone association assay

    Get PDF
    The Histone Association Assay provides an easy approach for detecting proteins that bind chromatin in vivo. This technique is based on a chromatin immunoprecipitation protocol using histone H3-specific antibodies to precipitate bulk chromatin from crosslinked whole cell extracts. Proteins that co-precipitate with chromatin are subsequently detected by conventional SDS-PAGE and Western blot analysis. Unlike techniques that separate chromatin and non-chromatin interacting proteins by centrifugation, this method can be used to delineate whether a protein is chromatin associated regardless of its innate solubility. Moreover, the relative amount of protein bound to DNA can be ascertained under quantitative conditions. Therefore, this technique may be utilized for analyzing the chromatin association of proteins involved in diverse cellular processes
    corecore