8 research outputs found

    A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo

    Get PDF
    Whole-cell catalysts for non-natural chemical reactions will open new routes to sustainable production of chemicals. We designed a cytochrome 'P411' with unique serine-heme ligation that catalyzes efficient and selective olefin cyclopropanation in intact Escherichia coli cells. The mutation C400S in cytochrome P450_(BM3) gives a signature ferrous CO Soret peak at 411 nm, abolishes monooxygenation activity, raises the resting-state FeIII-to-FeII reduction potential and substantially improves NAD(P)H-driven activity

    Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme

    Get PDF
    Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes

    Altered spin state equilibrium in the T309V mutant of cytochrome P450 2D6: a spectroscopic and computational study

    Get PDF
    Cytochrome P450 2D6 (CYP2D6) is one of the most important cytochromes P450 in humans. Resonance Raman data from the T309V mutant of CYP2D6 show that the substitution of the conserved I-helix threonine situated in the enzyme’s active site perturbs the heme spin equilibrium in favor of the six-coordinated low-spin species. A mechanistic hypothesis is introduced to explain the experimental observations, and its compatibility with the available structural and spectroscopic data is tested using quantum-mechanical density functional theory calculations on active-site models for both the CYP2D6 wild type and the T309V mutant

    Analysis of the domain properties of the novel cytochrome P450 RhF

    No full text
    The properties of the heme, flavin mononucleotide (FMN) and FeS domains of P450 RhF, from Rhodococcus sp. NCIMB 9784, expressed separately and in combination are analysed. The nucleotide preference, imidazole binding and reduction potentials of the heme and FMN domains are unaltered by their separation. The intact enzyme is monomeric and the flavin is confirmed to be FMN. The two one-electron reduction potentials of the FMN are -240 and -270 mV. The spectroscopic and thermodynamic properties of the FeS domain, masked in the intact enzyme, are revealed for the first time, confirming it as a 2Fe-2S ferredoxin with a reduction potential of -214 mV
    corecore