59 research outputs found

    Type 1 diabetes mellitus induces structural changes and molecular remodelling in the rat kidney

    Get PDF
    There is much evidence that diabetes mellitus (DM) –induced hyperglycemia (HG) is responsible for kidney failure or nephropathy leading to cardiovascular complications. Cellular and molecular mechanism(s) whereby DM can damage the kidney is still not fully understood. This study investigated the effect of streptozotocin (STZ)-induced diabetes (T1DM) on the structure and associated molecular alterations of the isolated rat left kidney following 2 and 4 months of the disorder compared to the respective age-matched controls. The results revealed hypertrophy and general disorganized architecture of the kidney characterized by expansion in glomerular borders, tubular atrophy and increased vacuolization of renal tubular epithelial cells in the diabetic groups compared to controls. Electron microscopic analysis revealed ultrastructural alterations in the left kidney highlighted by an increase in glomerular basement membrane width. In addition, increased caspase-3 immuno-reactivity was observed in the kidney of T1DM animals compared to age-matched controls. These structural changes were associated with elevated extracellular matrix (ECM) deposition and consequently, altered gene expression profile of ECM key components, together with elevated levels of key mediators (MMP9, integrin 5α, TIMP4, CTGF, vimentin) and reduced expressions of Cx43 and MMP2 of the ECM. Marked hypertrophy of the kidney was highlighted by increased atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression. These changes also correlated with increased TGFβ1 activity, gene expression in the left kidney and elevated active TGFβ1 in plasma of T1DM rats compared to control. The results clearly demonstrated that TIDM could elicit severe structural changes and alteration in biochemical markers (remodeling) in the kidney leading to diabetic nephropathy (DN)

    Diabetic nephropathy: What does the future hold?

    Full text link

    Levels of soluble FcγRIII correlate with disease severity in sepsis

    No full text
    Neutrophil activation is thought to play a crucial role in the pathogenesis of sepsis. During activation, neutrophils adhere to and migrate through the endothelium. Therefore, the amount of circulating neutrophils does not adequately reflect the total amount of neutrophils that are involved in the pathophysiologic process of this condition. In this study we test the hypothesis that the severity of sepsis is associated with the total body mass of neutrophils as reflected in the plasma concentration of soluble Fcγ receptor type III (sFcγRIII). Nineteen patients with sepsis (12 male, seven female, median age of 69 years, range 29–87 years) were included in this study. Ten healthy volunteers served as controls. Plasma sFcγRIII concentrations were measured by ELISA. Other parameters that were studied were leucocyte count, plasma concentrations of lactoferrin and soluble l-selectin, and surface expression of CD11b and CD66b on circulating neutrophils. Disease activity was measured using the Acute Physiology and Chronic Health Evaluation (APACHE) II score. Soluble FcγRIII levels were elevated in sepsis patients whereas soluble l-selectin levels were moderately decreased compared with healthy controls. Markers of cell activation were significantly increased in sepsis patients. Soluble FcγRIII correlated with disease severity as measured by the APACHE score (P < 0.05, r = 0.53), whereas the other parameters did not correlate with the APACHE score. In conclusion, this study demonstrates that soluble FcγRIII is a useful marker for disease severity in patients with sepsis
    • …
    corecore