35 research outputs found

    Multilevel model to assess sources of variation in follicular growth close to the time of ovulation in women with normal fertility: a multicenter observational study

    Get PDF
    Mikolajczyk RT, Stanford JB, Ecochard R. Multilevel model to assess sources of variation in follicular growth close to the time of ovulation in women with normal fertility: a multicenter observational study. Reproductive Biology and Endocrinology. 2008;6(1): 61.Background: To assess the amount of variability in ovarian follicular growth rate and maximum follicular diameter related to different centers, women and cycles of the same women in a multicenter observational study of follicular growth. Methods: Secondary analysis of a prospective cohort study from eight centers in Europe. There were 533 ultrasound examinations in 282 cycles of 107 women with normal fertility. A random effects model with center, woman and cycle as hierarchical units of variation was used to analyze mean follicular diameter on days preceding ovulation. Results: Follicular growth did not differ by center. There was homogenous growth across women and cycles, and the maximum follicular diameter before ovulation varied substantially across cycles but not across women. Many (about 40%) women had small maximum follicular diameter on the day before ovulation (<19 mm). Pre-ovulatory cycle length was not related to maximum follicular diameter. Conclusion: In normal fecundity, there is a substantial variation in maximum follicular diameter from cycle to cycle based on variation in the duration of follicular development, but the variation could not be explained by different characteristics of different women. Explanation of variation in follicular growth has to be found on the cycle level

    A-6G and A-20C Polymorphisms in the Angiotensinogen Promoter and Hypertension Risk in Chinese: A Meta-Analysis

    Get PDF
    BACKGROUND: Numerous studies in Chinese populations have evaluated the association between the A-6G and A-20C polymorphisms in the promoter region of angiotensinogen gene and hypertension. However, the results remain conflicting. We carried out a meta-analysis for these associations. METHODS AND RESULTS: Case-control studies in Chinese and English publications were identified by searching the MEDLINE, EMBASE, CNKI, Wanfang, CBM, and VIP databases. The random-effects model was applied for dichotomous outcomes to combine the results of the individual studies. We finally selected 24 studies containing 5932 hypertensive patients and 5231 normotensive controls. Overall, we found significant association between the A-6G polymorphism and the decreased risk of hypertension in the dominant genetic model (AA+AG vs. GG: P=0.001, OR=0.71, 95%CI 0.57-0.87, P(heterogeneity)=0.96). The A-20C polymorphism was significantly associated with the increased risk for hypertension in the allele comparison (C vs. A: P=0.03, OR=1.14, 95%CI 1.02-1.27, P(heterogeneity)=0.92) and recessive genetic model (CC vs. CA+AA: P=0.005, OR=1.71, 95%CI 1.18-2.48, P(heterogeneity)=0.99). In the subgroup analysis by ethnicity, significant association was also found among Han Chinese for both A-6G and A-20C polymorphisms. A borderline significantly decreased risk of hypertension between A-6G and Chinese Mongolian was seen in the allele comparison (A vs. G: P=0.05, OR=0.79, 95%CI 0.62-1.00, P(heterogeneity)=0.84). CONCLUSION: Our meta-analysis indicated significant association between angiotensinogen promoter polymorphisms and hypertension in the Chinese populations, especially in Han Chinese
    corecore